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Abstract 

This work describes an OSGi-based middleware platform 

to enable more scalable, future-proof, cost-efficient and 

standard-following intelligent environments. It 

complements OSGi with two main features which make it 

even more suitable for intelligent environment 

management: a) dynamic discovery and monitoring of 

distributed semantic services and b) semantic context 

modelling and reasoning for intelligent service provision. 

Furthermore, it evaluates the suitability of applying 

semantic technologies in the construction of intelligent 

environment middleware. 

1 Introduction 

In Ambient Intelligence (AmI) [17], context monitoring or 

perception of user’s current situation is paramount in 

order to adapt the environment’s behaviour to user needs. 

However, it is necessary to previously augment with 

computational, communicational or sensorial capabilities 

our working and living environments if environment 

dynamic adaptability wants to be achieved. In other 

words, AmI forces us to instrument locations, devices and 

everyday objects so that the surrounding environment 

appears to be intelligent.  

 

Environment intelligence, i.e. the environment’s ability to 

match the user’s current context and needs with the 

services offered by surrounding devices, may be delegated 

either to the mobile devices which the users wear or to the 

nearly imperceptible infrastructure deployed in such 

environments. In previous work [11] we explored the first 

scenario where the user carries intelligent devices which 

assist them in their daily activities intermediating with the 

environment. On the contrary, this work explores how to 

make our living and working environments more 

intelligent by adopting standard-based middleware 

addressing the flexibility, future-proof, programmability 

and intelligence requirements demanded by next 

generation intelligent environments. 

 

The “SmartLab
1
: Cooperative and Programmable 

Intelligent Working Environment” project aims to provide 

a semantic middleware platform to improve the 

instrumentation, management and control of current 

intelligent environments. In this case, the environment 

considered is our heavily instrumented research lab 

SMARTLAB (http://www.smartlab.deusto.es), enriched 

by a wide assortment of interaction, communication and 

computation devices in order to improve the daily 

working processes carried out by researchers in it.  

 

This work differs from previous intelligent middleware 

platform proposals in its focus on being reliable, future-

proof and self-configurable in its intelligence capabilities, 

giving place to next generation intelligent environments, 

i.e. programmable, scalable, cost-efficient, evolvable and 

based on standards.  In a nutshell, SmartLab provides the 

software and hardware infrastructure required to add 

evolvable intelligence to a living, working or leisure 

environment in a simple, extensible and scalable manner. 

 

The following sections describe the SmartLab platform 

which integrates sensing, reasoning and actuation over 

heterogeneous equipment in an intelligent environment, 

independently of its concrete application domain. Section 

2 offers an overview of previous related work on 

intelligent and semantic middleware for environment 

automation. Section 3 reviews the multi-layer architecture 

of the SmartLab middleware platform. Section 4 focuses 

on the dynamic discovery module of SmartLab. Section 5 

describes the ontological and rule-based reasoning 

features of SmartLab and analyses its performance. 

Finally, section 6 draws some conclusions and suggests 

further work.  

2 Related Work 

There have been quite a few attempts [2][3][6][7] to create 

middleware which aims to simplify intelligent 

environment deployment, configuration and management. 

Among them, quite a few have considered using OSGi 

[12], since it is a software infrastructure which ensures 

platform and producer independence and easy 

                                                           
1 From now on, the notation SmartLab refers to the research project, 

whilst SMARTLAB refers to the research lab. 



programmability. It provides an execution environment 

and service interfaces to allow the discovery and dynamic 

cooperation of heterogeneous devices and services to 

guarantee evolution and external connectivity, allowing us 

remote control, diagnosis and management. This feature 

set explains why OSGi is emerging as a de facto industry 

standard [9] for gateways that monitor, control and 

coordinate the heterogeneous devices (sensor and 

actuators) dynamically deployed in any kind of 

environment (house, factory, car or even a research lab as 

in the case of SMARTLAB).  

 

However, OSGi does have its limitations and needs to 

adapt to the context gathering, reasoning and timely 

actuation requirements of ubiquitous computing 

environments. For instance, OSGi proposes a centralised 

architecture which needs cooperation with network 

discovery protocols [5] in order to be aware of remotely 

available services. Although OSGi does provide 

mechanisms to dynamically install, uninstall or update the 

executing services within an OSGi framework, it is not 

capable by itself of discovering newly emerging devices 

with their associated services. Thus, research efforts such 

as R-OSGi [16] have given answer to this issue, by 

enabling seamless cooperation among services deployed 

in different OSGi servers. The suggested SLP-based 

discovery mechanism is in our opinion more resource 

demanding than the approach presented in section 4. 

Furthermore, although they provide mechanisms to 

dynamically discover and consume services they do not 

provide mechanisms to enable the automatic cooperation 

of several OSGi services without previous knowledge 

among them. SmartLab caters with this situation 

complementing OSGi bundles with semantic features.  

 

Other researchers have noticed the importance of adding 

reasoning capabilities to OSGi servers in order to make 

them more suitable for AmI environment management. A 

current trend of this regard is to adopt OWL-based [13] 

semantic ontologies [1][18] as knowledge repositories 

upon which reasoning [10] takes place. Thus, Diaz-

Redondo et al. [3] point out the problems associated to 

OSGi and other distributed systems middleware to enable 

the spontaneous collaboration of software services without 

previous knowledge among them. It is hardly realistic to 

suppose that a specific provider knows, a priori, the 

interfaces that match other providers’ services. Their 

solution approach is to describe OSGi services with their 

properties and capabilities through OWL-S[14] so that 

other software elements in a residential gateway can 

automatically determine their purpose and know how to 

invoke them. SmartLab has restricted to model 

semantically the inputs and outputs of device representing 

OSGi bundles. Although service semantization is a 

powerful mechanism it imposes heavy processing 

demands not suitable for the embedded devices which 

usually populate AmI environments such as SMARTLAB. 

Furthermore, it still requires the application programmer 

to be aware of the types of services available in an 

environment in order to issue appropriate service 

composition requests.  

Gu et al. [7] decouple OSGi services from the context they 

produce and consume. They provide an architecture 

named SOCAM which enables the easy construction and 

cooperation of context-aware applications or bundles 

through context sharing. Inference over the context 

published in semantic format (RDF/OWL) is carried out 

using both ontological and user provided rule-based 

reasoning. The main limitation of their approach is that 

they do not leverage on OSGi’s already existing service 

registry and even notification mechanisms to register with 

context sources and notify events. A key feature that 

distinguishes SmartLab from SOCAM and other works is 

the ability of augmenting, on the fly, the domain ontology 

on which its inference process is performed. Furthermore, 

we adopt a more loosely coupled event-based component 

programmability model based on OSGi standard services.  
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Fig. 1. SmartLab multi-layer architecture. 

3 SmartLab Semantic Middleware  

The main contribution of this work has been to define a 

multi-layer architecture, as shown in Fig. 1, which enables 

to configure and deploy intelligent environments more 

easily. The following sections describe the four layers in 

which such software architecture is divided and the 

embedded platform designed to augment everyday objects 

with a degree of intelligence and allow its integration with 

our software infrastructure.  

3.1 Layer 1: Sensing and Actuation 

This layer is composed by the set of devices (sensor and 

actuators) which populate an environment and constitute 

the hardware of the services offered to the user. SmartLab 

combines the capabilities of all those devices in layer 1 to 

offer advanced intelligent services to the end user in layer 

3. Both industry standard and custom-built sensing and 

actuation devices have been used: 

• EIB/KNX. SMARTLAB has been equipped with an 

EIB/KNX automation bus to which lighting, air 

conditioning/heating, presence detection and door and 



window opening sensors and actuators were attached. 

Thus, this bus allows for lighting, temperature or 

security automation. 

• VoIP and VideoIP. Several Asterisk[4]-compatible 

VoIP phones have been installed in SMARTLAB so 

that telephony related actuations can be triggered. 

Likewise, several IP video cameras have been 

scattered throughout the lab, so that surveillance and 

security related services can be performed. 

• Indoor Location Systems. The Ubisense 

(http://www.ubisense.net/) indoor location system has 

been deployed in SMARLAB. Such location system 

allows tracking users and objects within 20 cm 

accuracy. Furthermore, this location system has been 

complemented with several Mifare® 13.56 MHz 

RFID readers for detecting the presence of people not 

wearing Ubisense tags. 

• SmartDisplay. This custom-built intelligent device 

produced combines an organic screen (µOLED-96-

G1 of 4D Systems) with a WSN mote based on 

Mica2DOT operating on band 433 MHz capable of 

displaying messages broadcasted by other nearby 

sensing motes (see bottom left hand side of Fig. 2).  

• SmartChair. This custom-built intelligent chair is the 

result of combining two pressure sensors at the base 

and back of a conventional chair with a Mica2 mote 

which broadcasts the pressure values (see top left 

hand side of Fig. 2).  

• SmartContainer. This custom-built container resulted 

from combining a liquid level sensor with a Mica2 

mote alerts every time the water goes over some 

limits (see bottom right hand side of Fig. 2). 

 

 
Fig. 2. SmartChair (top left), SmartLab Embedded 

Platform (top right), SmartDisplay (bottom left) and 

SmartContainer (bottom right). 

3.2 Layer 2: Service Abstraction 

This layer transforms the functionality of the devices of 

layer 1 into software services. An OSGi bundle 

implementing such services has been provided for each of 

the device types deployed within SMARTLAB. Thus, in 

our model every device type is encapsulated in the form of 

a bundle or execution unit within the OSGi environment. 

Such bundles are .jar archives which include several 

binary files and a manifest file with certain configuration 

properties for each bundle. In fact, such bundles rather 

than encapsulating the real functionality, they act as 

proxies or delegates of such functionality and are 

downloadable and installable into OSGi environments 

where they process commands issued by other bundles or 

third party applications which are propagated to the 

devices in layer 1.  

 

A key aspect to consider is where to host the bundles 

which act as proxies of physical devices. The obvious 

location is the devices themselves. However, this requires 

that devices have to have the capability of publishing and 

announcing bundles, and, more importantly, serve the 

requests received from such bundles once proxies have 

been installed in a client OSGi environment. Given that is 

not common to encounter physical devices with such 

advanced computation capabilities, usually the software 

representatives of such devices will be executed in servers 

which mediate between the real devices through home 

automation buses, serial ports or any other communication 

mechanism and the clients of such bundles. Next, the 

OSGi bundles corresponding to the sensing and actuation 

devices of section 3.1 are described: 

• EIB/KNX Bundle. It is located in a PC connected to 

the EIB/KNX bus through a BCU (Bus Coupling 

Unit) USB interface and executing the KNXnet to IP 

tunneling server Tweety 

(https://www.auto.tuwien.ac.at/a-

lab/eibdtweety.html). The main mission of this bundle 

is to allow message passing from and to the home 

automation bus. It exports a range of services 

representing each of the EIB devices plugged into the 

bus. Thus, if the environment has binary lights it will 

register an OSGi service with the interface 

IBinaryLight for each of the existing lights in an 

environment. Other types of services used are 

DimmableLight, Alarm, OpeningSensor or 

Heating. The implementation of such bundles has 

made use of the Calimero Java library which allows 

the communication with the Tweety server earlier 

mentioned. This and the following bundles are 

exported through the dynamic service discovery and 

installation protocol described in Section 4. 

• VideoIP Bundle. This bundle registers a service for 

each of the four D-Link DCS-5300G PTZ IP cameras 

deployed trough SMARTLAB. The service exported 

offers methods to capture image stills, move the 

camera objective or activate the camera built-in 

movement detection mechanism, which uploads the 

captured images into an FTP server every time that 

movement is detected.  

• VoiceIP Bundle. This bundle is located in a PC 

equipped with an Ambient MD3200 card which 

allows the communication between the Asterisk [4] 

software and the telephone system. In fact, this 

bundle communicates with a web service in the 

Asterisk machine offering functionality such as: a) 

user management, b) call management for registered 



users, c) text synthesis from text, d) automatic pre-

recorded message alert calls or e) call waiting 

message recording.  

• Ubisense Bundle. This bundle is hosted in the 

machine where the Ubisense location server is 

installed. When exported it acts as proxy of a web 

service wrapper for the Ubisense DCOM component. 

It offers the following functionality to third 

applications: a) list people present in a given location, 

b) list objects whose location has changed from last 

reading, c) notification of appearance, disappearance 

and movement of Ubisense tagged-objects. 

• Device Controller Bundle. It is responsible of 

deploying each SmartLab custom-built device 

(remember Fig. 2) as an OSGi service. Such bundles 

are published by the SmartLab Mote Communication 

server executed within the embedded platform 

selected to mediate with our custom devices.  

3.3 SmartLab Embedded Platform 

SmartLab vision is that small footprint low-cost almost 

invisible embedded platforms attached to everyday objects 

will foster intelligent environment deployment. These 

devices will facilitate the integration of computation and 

communication capabilities into everyday objects, which 

can then be exported, downloadable and easily 

consumable from third party applications. SmartLab has 

addressed this idea by assembling an embedded platform 

constituted by the following elements: 

• A Gumstix Connex 400xm with a 400 MHz 

processor, 16 MB Flash memory and 64 MB RAM. 

• A Wifistix module which provides Wi-Fi 

communication capabilities to the Gumstix module so 

that it can connect with a IP to wireless sensor 

network (WSN) bridge based on the Crossbow Mica 

2 platform, executing in one of the servers of 

SMARTLAB. 

• A set of Mica2 sensor nodes integrated into the set of 

proprietary sensing (SmartChair and SmartContainer) 

and actuation (SmartDisplay) devices reviewed. 

 

The Gumstix module acts as gateway between a Wi-Fi 

network and a Crossbow Mica2-based WSN constituted 

by the objects to which sensor motes have been stuck. 

These motes are capable of communicating at 38.4 

Kbaudios imposing minimum energy consumption 

requirements and exposing a reduced size, which makes 

them ideal for integration with everyday objects. The 

software image installed in them uses JamVM, compatible 

with Java 2, but optimized for devices with reduced 

computing resources.  

 

 
Fig. 3. Environment control of the electronics area within 

SMARTLAB: lighting and door opening/closing. 

 

 
Fig. 4. Surveillance control in SMARTLAB. 

3.4 Layer 3: Semantic Context Modelling and Service 

Management 

The Knopflerfish-based OSGi server which implements 

layer 3, namely SmartLab Server, acts as a gateway 

between the advanced OSGi services resulted from 

combining, often through the OSGi Wire Admin Service, 

the functionality offered by the equipment and smart 

objects deployed in SMARTLAB and the set of third party 

agents which want to exploit such services. Such gateway 

is composed of the following three core modules (review 

Fig. 1): 

• Continuous and Dynamic Environment Service 

Management Module. Implemented by the Service 

Manager component, it monitors the environment 

continuously to determine the appearance and 

disappearance of new services provided through layer 

2 as result of the activation and deactivation of 

equipment within an intelligent environment. 

• Semantic Context Management Module. Implemented 

through the Semantic Context Manager component, it 

provides a semantic inference component which 

operates over an ontology where all context 

knowledge is gathered. Whenever a new device 

bundle is discovered all its semantic metadata is 

gathered and added to the ontology constituting the 

knowledge base and the domain rules set kept in this 

module. It can happen that the rules published by a 

device depend on knowledge provided by another 

device representing service. It is not required that a 

device has a priori knowledge of another device. 

However, occasionally it will be needed in case that 

knowledge gathered by two or more different device 



types wants to be combined and reason upon. This is 

the only point when certain coupling among devices 

can take place within SmartLab. 

• Web Gateway Module. Implemented through the Web 

Interface Gateway component, it offers a web based 

interface for third party application wanting to 

interact with the environment services managed by 

SmartLab Server. It behaves both as a web-to-OSGi 

service gateway and as an HTTP web controller for 

the requests issued by the web gadgets that constitute 

the front-end to the advanced services provided by 

layer 3. This element translates HTTP requests 

generated from interactions over the gadgets controls 

into method invocations of OSGi services. 

3.5 Layer 4: Service Programmability, Management 
and Interaction 

It is the top layer of the architecture where the final 

applications which make use of the SmartLab 

infrastructure lie. Furthermore, it provides two generic 

applications which allow controlling and managing an 

intelligent environment, namely Environment Controller 

and Context-Manager Front-End. Next, these two generic 

applications are described: 

• Environment Controller. This component offers an 

intuitive interface based on the web gadget concept to 

control the software services associated to 

instrumented objects in the environment or the 

advanced services which coordinate the operation of 

several of those elements in SMARTLAB. This 

environment administrator makes use of small size 

web gadgets in order to be accessible from different 

clients such as web browsers, tactile screens or 

mobile devices. 

 

The web interface developed requires user login. 

Once a user has logged in, they can interact with a 

right hand side menu, see Fig. 3 and Fig. 4, which 

brings on the left hand side a set of gadgets 

representing the services available in the 

environment. This gadget-based system developed 

over the JavaScript library X (http://www.cross-

browser.com/) is completely modular, easing the 

creation and incorporation of new user interfaces for 

the management and control of new devices 

connected to the system.  

 

Any browser both in a PC or mobile device 

respecting web standards will be suitable to render 

this interface. Developing new gadgets for this 

application is also simple. It only requires knowledge 

about common web technologies such as HTML, CSS 

and JavaScript. 

• Context-Manager Front-End. This component offers 

a web interface which allows the following 

management actions: 

a. Management of device-associated OSGi bundles 

(activation, deactivation, elimination) and 

aggregated services currently active within 

SmartLab Server. 

b. Modification of the ontology which constitutes 

the knowledge base for SmartLab’s reasoning 

mechanism. 

c. Management of environments’ rule behaviour.  

d. Tracking of system log and statistics to verify 

SmartLab server’s continuous correct behaviour. 

4 Dynamic Discovery of Semantic Bundles 

This section explains how conventional OSGi bundles 

enhanced with semantic information are dynamically 

discovered, analysed, downloaded and installed into 

SmartLab Server. That way, this server is always aware of 

the most up-to-date range of active environment services. 

4.1 Semantically-enhanced OSGi Bundles 

Something remarkable about SmartLab is that the bundles 

discovered augment semantically the context-modelling 

ontology regulating SmartLab Server behaviour with new 

concepts (context classes and events) and instances of 

such concepts. The operations fulfilled by every SmartLab 

OSGi bundle on installation in the server are: 

1. The ontology modelling context knowledge within 

SmartLab Server is enriched with new device, context 

and event representing classes. 

2. New behaviour semantic rules are fed into the 

inference engine built in within SmartLab Server. 

Such engine reasons over the semantic data provided 

by the different bundles installed in the server.  

3. A set of aggregated event types [10] is specified 

which the rules defined by a device bundle may 

generate and to which other bundles can subscribe. 

 

On the other hand, during its lifetime, the services 

exported by a bundle are continuously publishing 

instances of the ontology classes earlier defined, which as 

a result fire the rule engine and generate aggregated event 

instances.  

 

Every device representing bundle in SmartLab must 

implement the ISmartlabService interface for each 

service it exports. This interface defines the contract 

between the ContextManager component of layer 3 and 

the discovered bundle services. The structure of such 

interface is the following: 

 
public interface ISmartlabService {  

   public String getOntology();  

   public String getIndividual(); 

   public String getRules(); 

   public String[] getEventsToRegister();  

   public void startUpdatingContext();  

   public void stopUpdatingContext();  

   public String getInterface();  

} 

 

The meaning of the methods provided by such interface 

which are invoked by the Context Manager is: 

• getOntology – returns an ontology with the 

device classes, their values and events in RDF/XML 

format. 



• getIndividual – returns an instance of the device 

class with current values for such device in 

RDF/XML. 

• getRules – returns behaviour rules exported by the 

device in Jena [8] rule format.  

• getEventsToRegister – returns the names of 

types of events in which the bundle is interested.  

• startUpdatingContext – the ContextManager 

calls this method to request a bundle to start updating 

its measures. Such context update is undertaken by 

the semantic bundle by invoking the 

UpdateContext method of ContextManager. 

• stopUpdatingContext – the ContextManager 

calls this method whenever a bundle should stop 

updating context. 

• getInterface – returns the name of the bundle 

interface. 

 

Fig. 5. Service Manager Internal Architecture. 

4.2 Dynamic Service Management Module 

This module allows the continuous and dynamic 

publication, announcement, discovery, download, 

installation and configuration of distributed services 

without requiring server reboot. The following OSGi 

bundles cooperate in such process and constitute the 

internal architecture of this module shown in Fig. 5: 

• Discovery Service Bundle. It implements the 

discovery protocol used by both SmartLab Server and 

the devices willing to export semantics enhanced 

bundles. A simple multicast protocol (see Fig. 6) is 

used to announce, discover, obtain bundle and service 

metadata and download the corresponding bundle. 

• Installer Service Bundle. It decides whether a 

candidate bundle should be installed or not. For that, 

it uses the meta-information provided by the 

discovery mechanism. Given that an OSGi bundle can 

define a set of dependencies for their correct 

behaviour, this bundle is responsible of ensuring such 

dependencies are fulfilled. Such process is undertaken 

with the help of an OSGi Bundle Repository (OBR), 

which is a repository where the bundle jars are placed 

together with an XML description of each of them 

and their dependencies.  

• SmlURLHandlerService Bundle. Whenever the 

installation service discovers a candidate bundle, it 

must process the bundle metadata to decide whether 

to proceed or not. The discovery and installation 

processes are dependent on the protocol supported by 

the target device to export the bundle’s .jar file. In 

order to make the discovery protocol agnostic to the 

code download mechanism used, a URL handler has 

been defined, named SmlURLHandlerService which 

is compatible with the standard OSGi UrlService. 

Thus, the installation service can obtain both the 

metadata and the .jar file through an URL (starting by 

sml://), without having to know the internal details 

about how that data is really gathered. 

• LocalRepositoryService Bundle. It stores the bundles 

downloaded.  This repository is updated every time a 

new bundle .jar is received or an earlier discovered 

bundle has stopped sending heartbeats (ANNOUNCE 

protocol message) generating a new version of the 

XML file describing its contents. The basic 

functionality of an OBR is already provided by 

Knopflerfish. This OBR has only been complemented 

by the Installer Service with the 

LocalRepositoryService bundle. The installer service 

decides whether to install or not a specific bundle by 

checking the LocalRepositoryService XML file. 

• OSGi Configuration Service. Given that bundles are 

installed (an uninstalled) automatically and, in most 

cases, they manage a remote device or service, very 

often some dynamically changing configuration 

details (IPs, ports and so on) must be supplied to 

update the internal configuration of the services 

registered by a bundle. With that objective the 

parameters which may change are declared in the 

bundle manifest. Those parameters are loaded and 

managed from then on by the OSGi Configuration 

Admin.  

 

Fig. 6. Service Discovery Protocol Messages. 

5 Semantic Context Management 

The Semantic Context Manager component, shown in 

layer 3 of Fig. 1, consists of three main elements, which 

are further detailed in Fig. 7: 

• Context Processor. This component gathers the 

context supplied in semantic format by the deployed 

services and populates with it SmartLab Server’s 

context ontology knowledge base.  An example of 

this is the data gathered from a location system. 



Initially, these data are only several real numbers, but 

the semantization process within each SmartLab 

OSGi bundle interprets them and adds semantic 

information, indicating that X and Y refer to the 

position on an object and that those values are relative 

to a given reference point: 

 
<BinnaryLight rdf:ID="LightArea2"> 

<placedIn rdf:resource="#LockerRoom"/> 

<name rdf:datatype="XMLSchema#string">    

LightArea2 

</name> 

<x>23.3</x> 

<y>45.5</y> 

</BinnaryLight> 

 

• Context Reasoner. It augments the context 

information making explicit hidden implicit 

information. For that, it uses both the semantic 

relations of the SmartLab ontology and the rules 

designed for a specific domain (e.g. SMARTLAB 

research lab). After new context information is 

inferred new reactive behaviour is produced 

triggering events such as: “there is a meeting”, “there 

is flood”, “person X entered in room Y” and so on. 

• Event Manager. It transforms the notifications 

generated on the right hand side (RHS) of 

SMARTLAB domain rules into non-semantic OSGi 

EventAdmin-compatible events. Besides, with the 

help of OSGi EventAdmin, it maintains a registry of 

all events for which interest has been expressed. 

Internally, it checks continuously SmartLab’s RDF 

knowledge base through SPARQL to find out newly 

generated events.  
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Fig. 7. Semantic Context Manager Architecture. 

The following steps illustrate the context reasoning 

process undertaken within SmartLab Server: 

1. SmartLab knowledge base is fed with context 

information in semantic format provided by the 

different services installed in SmartLab Server. 

2. After updating such semantic model, the inference 

engine provided by Jena firstly enhances the RDF 

triples currently available with newly inferred ones 

and secondly finds domain rules which trigger in their 

RHS the generation of aggregated events associated 

to reactive behaviour to be performed by the devices 

deployed in SMARTLAB.   

3. Aggregated event notification is produced after 

mapping the semantic events generated into OSGi 

events. Such events are broadcasted automatically by 

OSGi EventAdmin to the SmartLab bundles that 

registered interest on the type of events generated.  

4. The notified bundles use the event information to 

generate the associated reactions. For instance, make 

a call through Asterisk, switch on the lights through 

EIB and so forth. 

5.1 SmartLab Generic Context Ontology 

The knowledge base in SmartLab is modelled by an 

ontology, which offers the following advantages: 

• The knowledge base is expressed in 

XML/RDF/OWL, a standard set of languages which 

can be easily processed by applications. 

• An ontology can be easily extended with new entities 

without affecting the already existing ones. 

• Several ontologies can be combined in an easy 

manner providing there are entities in common. Thus, 

other applications can expand this knowledge base, 

enhancing and improving it in this manner. 

• The semantic relations expressed in the ontology 

allow making explicit the implicit knowledge in a 

simple manner.  

 

This ontology has been designed taking into account 

earlier semantic AmI systems [1][7]. Three key elements 

within the ontology have been identified which model 

context for any intelligent environment: “where”, “when” 

and “who”. Therefore, the main elements of this ontology 

are space, time, actors (people, agents or devices) and 

events: 

• TimeItem – class which models time. 

• SpatialItem – class which models locations. 

• LocableItem – assigns locations to entities. 

• Event – context changes which occur at a specified 

time at certain location.  

5.2 Knowledge Generation in SmartLab 

SmartLab uses two knowledge generation mechanisms 

based on reasoning over its generic context modelling 

ontology: a) ontological reasoning and b) rule-based 

reasoning. Ontological reasoning makes use of the RDF 

predicates: rdf:domain, rdf:range, and 

rdf:type; the RDFS predicates: 



rdfs:subPropertyOf, rdfs:subPropertyOf; 

and the OWL ones: owl:TransitiveProperty, 

owl:SymmetricProperty and owl:inverseOf. 

Such predicates are used to infer implicit knowledge from 

the explicit knowledge gathered in the form of RDF triples 

in the SmartLab Server’s knowledge base. On the other 

hand, rule-based reasoning can be used to define relations 

among entities in the generic ontology which relates 

space, time and actors and which cannot be expressed 

through RDF, RDFS and OWL predicates. For example, 

the following rule specifies when an event ?ev1 should 

be considered to have happened before event ?ev2.  

 
[TEMPORAL1-eventInstantBefore:  

   (?ev1 rdf:type 

<http://deusto.es/smartlab.owl#Event>),   

   (?ev1 <http://deusto.es/smartlab.owl#time> 

?ins1),  

   (?ins1 <http://deusto.es/smartlab.owl#value> 

?v1), 

   (?ev2 rdf:type 

<http://deusto.es/smartlab.owl#Event>),  

   (?ev2 <http://deusto.es/smartlab.owl#time> 

?ins2),  

   (?ins2 <http://deusto.es/smartlab.owl#value> 

?v2), 

   lessThan(?v1,?v2)  

->  

   (?ev1 <http://deusto.es/smartlab.owl#before> 

?ev2) 

] 
 

Finally, it is very important to model the knowledge and 

behaviour of a concrete application domain as is the case 

of SMARTLAB, which is equipped with a range of device 

types to facilitate the activities of researchers. For 

instance, the following rule would determine that a 

meeting is taking place in SMARTLAB whenever there 

are at least two people in the meeting area. Observe that 

the SmartLab OSGi bundle responsible of activating the 

elements to run a meeting (show presentation in projector, 

switch on heating, regulate lighting, and so on) would not 

only register the following rule with the Context Manager 

but it would also enrich the generic ontology with 

concepts such as MeetingArea which hierarchically 

depends on SpatialItem and more concretely in the 

concept of Area shown in Fig. 8.  

 
[EVENT-Meeting: 

(?meetingArea rdf:type 

<http://deusto.es/smartlab.owl#MeetingArea>), 

(?meetingArea 

<http://deusto.es/smartlab.owl#containsPersonItem

> ?p1), 

(?meetingArea 

<http://deusto.es/smartlab.owl#containsPersonItem

> ?p2), 

 (?p1 <http://deusto.es/smartlab.owl#name> 

?name1), 

(?p2 <http://deusto.es/smartlab.owl#name> 

?name2), 

notEqual(?name1, ?name2), 

makeTemp(?meetingEvent) 

-> 

(?meetingEvent 

rdf:type<http://deusto.es/smartlab.owl#LocableMee

tingEvent>), 

(?meetingEvent 

<http://deusto.es/smartlab.owl#place> 

?meetingArea)  

(?meetingEvent 

<http://deusto.es/smartlab.owl#name> ?name1)  

(?meetingEvent 

<http://deusto.es/smartlab.owl#name> ?name2)  

] 

 

 
Fig. 8. SpatialItem Class Hierarchy. 

5.3 Knowledge Reasoning in SmartLab 

As mentioned, SmartLab undertakes two types of context 

reasoning: ontology- and rule-based reasoning. Therefore 

an important design decision was to choose whether to 

combine both types of reasoning in the same reasoning 

engine or use two different engines. The main problem of 

using separate engines is that knowledge must be 

continuously exchanged between both engines, there is no 

common knowledge base. On the other hand, using an 

embedded reasoning engine within the ontological engine 

would not allow the ontological engine to observe the 

changes undertaken by the rule-based engine over the 

latest ontological knowledge base snapshot. The main 

advantage of using a single engine is that no knowledge 

interchange is required. Besides, only a reduced set of 

OWL predicates may be regarded for ontological 

reasoning if the whole set is not required, so reducing the 

overall resource demands. However, the main restriction 

is that the OWL semantic predicates have to be re-

expressed in the chosen rule format.   

 

The following example shows how to express the OWL 

predicate owl:inverseOf as a semantic rule in our 

chosen (Jena) rule format. In order to simplify the 

definition of such transformations we have made use of 

the theoretic models of RDF, RDFS and OWL[13]. 

 
OWL-InverseOf: 

   (?x ?prop1 ?y), 

   (?prop1 owl:inverseOf ?prop2) 

   ->  

   (?y ?prop2 ?x) 

]  



Jena rule engine’s forward chaining inference capabilities 

allow the Context Manager to undertake three types of 

inference divided in two phases. In the first phase, the 

engine extracts the knowledge implicit in the ontology and 

processes its semantic relations to expand the knowledge 

base. Then, in the second phase, making use of the 

expanded knowledge base it infers actions to be carried 

out by the system, i.e., it generates the events that the 

actuation bundles respond to. Three types of rules have 

been defined: 

• Semantic rules – they are divided in two 

subcategories: RDF and OWL. In order to implement 

such rules the theoretical models of both 

specifications have been analysed. Only rules that 

extend the knowledge base using semantic relations 

have been considered. 

• Knowledge extraction rules – they enable extracting 

high level knowledge from the ontology implicit 

knowledge. The three main aspects modelled on the 

system are what, when and where. Therefore, the 

knowledge inferred is based on time and location. 

Among other things, these rules order events and find 

out the physical relations among them. 

• Event-inferring rules – they generate aggregated 

events from the context currently stored in the 

knowledge base. They reason over the existing 

explicit or generated knowledge to reason upon it and 

infer what events should be launched. Although the 

knowledge extraction rules can be extrapolated to any 

AmI application and domain (factory, car, home, 

laboratory), the event inferring rules depend on the 

specific domain considered. These rules define the 

behaviour of a specific type of environment. Thus, to 

illustrate this point two types of rules have been 

defined related to the SMARTLAB domain: meeting 

rules and security/safety rules. These rules alert the 

bundles interested on easing meetings, or increasing 

the environment safety (prevent floods) by switching 

off equipment or closing doors. The previously 

reviewed EVENT-Meeting rule shows how to 

generate a MeetingEvent whenever there are at 

least two people in the meeting area. 

5.4 Performance of Knowledge Inferring Process 

Adopting a semantics-based reasoning mechanism is very 

powerful. However, currently available reasoning engines 

still do not offer great performance. In order to assess this 

point we have carried out several tests to determine the 

performance of ContextManager in two situations: a) the 

inclusion of new semantic information and b) the rule-

based reasoning process. It is important to note that 

whenever the SmartLab ontology is upgraded with new 

concepts such as classes or events, a validation process is 

carried out that ensures the continuous validity of it. This 

process obviously delays the reasoning process but it is 

compulsory to guarantee the ontology integrity. 

 

Concretely, the discovery of several devices which 

register their ontology extensions, individuals and rules 

has been emulated. The tests have been repeated 

considering 5, 10, 20, 50 and 100 different devices. The 

following measurements have been taken: 

• Registry time – represents the time invested in 

introducing the semantic information added by a 

device to the default SmartLab ontology and the 

device’s behaviour rules to the SmartLab rule base. 

• Inference time – represents the time required to 

introduce the context information, e.g. temperature 

value change, and the rule based inference process 

resulted from this change is concluded.  

• Average triples, classes, individuals and rules – gives 

an idea of the size of the knowledge base in every 

case considered. 

 
 5 

Devices 
10 

Devices 
20 

Devices 
50 

Devices 
100 

Devices 

Average 

Registry 
Time (ms) 

 

506 527 415 535 1000 

Average 
Inference 
Time (ms) 

1854 2620 3671 9944 27827 

Average 
triples 
 

866 965 1164 1656 2329 

Average 
clases 
 

112 123 143 203 303 

Average 
individuals 
 

66 84 121 194 269 

Average 
rules 

29 35 45 75 125 

Table 1: Context Manager Performance Tests 

 

Table 1 illustrates the results obtained by the Context 

Manager component when registering new semantic 

concepts and performing its reasoning process in average, 

taking into consideration the cases where 5, 10, 20, 50 and 

100 devices are simultaneously generating new context 

inputs. Obviously, the more services the system has to 

cope with the worse performance it is obtained. The 

average reasoning time obtained after a context change 

has been produced ranges from 1.8 (acceptable) to 27.8 

(non-acceptable) seconds when passing from 5 to 100 

concurrent active devices.  

6 Conclusion and Further Work 

This work has presented some middleware extensions to 

the OSGi framework in order to cater for the evolution 

and self-configuration needs of Intelligent Environments. 

An environment configuration changes continuously 

across time and the management middleware must adapt 

to those changes seamlessly. The SmartLab Service 

Manager component proposed is capable of discovering 

newly emerging exporting services devices and to find out 

when earlier discovered services become unavailable. 

Furthermore, this service manager is capable of dealing 

with SmartLab bundles, i.e. standard OSGi bundles 

augmented with semantic metadata. Such metadata allows 

both the knowledge and rule bases of an environment, 



such as SMARTLAB, to be upgraded on the fly through 

the SmartLab Semantic Context Manager component. 

Consequently, the concepts modelled and the behaviour 

rules which regulate the reactivity of the environment are 

automatically and dynamically adapted to the latest 

configuration, i.e. devices deployed, of an environment, 

without user intervention.  

 

Further work will tackle the performance issues identified 

in section 5.4, regarding semantic rule-based reasoning. 

These performance problems are partly due to the use of a 

non-optimized rule engine in our experiments. Adopting 

semantic technologies to model and reason about 

environment context and services is undoubtedly very 

flexible and powerful, but unfortunately imposes higher 

resource requirements than other more conventional 

modelling and reasoning techniques such as RDBMS or 

traditional rule engines (CLIPS, Jess). In future work, we 

will replace the Jena reasoning engine by other more 

sophisticated rule engines such as Pellet [15] and work on 

the optimization of the results obtained. In addition, 

another area of improvement will be to semantize not only 

the context provided by bundles but also the services they 

offer. Thus, we will enable the automatic composition of 

OSGi services’ functionality without user supervision but 

attending to the specific needs of third-party users.  
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