
DYNAMIC DISCOVERY AND SEMANTIC REASONING FOR
NEXT GENERATION INTELLIGENT ENVIRONMENTS

D. López-de-Ipiña*, A. Almeida
+
, U. Aguilera

+
, I. Larizgoitia

+
, X. Laiseca

+
, P. Orduña

+
, A.

Barbier*, J.I. Vazquez*

*University of Deusto, {dipina, barbier, ivazquez}@eside.deusto.es,
+
Tecnológico Fundación Deusto, {aalmeida, uaguiler,

ilarizgo, xlaiseca, porduna}@tecnologico.deusto.es – Avda. Universidades 24, Bilbao, SPAIN

Keywords: AmI, OSGi, Service Discovery, Semantic

Web, Context Modelling and Reasoning.

Abstract

This work describes an OSGi-based middleware platform

to enable more scalable, future-proof, cost-efficient and

standard-following intelligent environments. It

complements OSGi with two main features which make it

even more suitable for intelligent environment

management: a) dynamic discovery and monitoring of

distributed semantic services and b) semantic context

modelling and reasoning for intelligent service provision.

Furthermore, it evaluates the suitability of applying

semantic technologies in the construction of intelligent

environment middleware.

1 Introduction

In Ambient Intelligence (AmI) [17], context monitoring or

perception of user’s current situation is paramount in

order to adapt the environment’s behaviour to user needs.

However, it is necessary to previously augment with

computational, communicational or sensorial capabilities

our working and living environments if environment

dynamic adaptability wants to be achieved. In other

words, AmI forces us to instrument locations, devices and

everyday objects so that the surrounding environment

appears to be intelligent.

Environment intelligence, i.e. the environment’s ability to

match the user’s current context and needs with the

services offered by surrounding devices, may be delegated

either to the mobile devices which the users wear or to the

nearly imperceptible infrastructure deployed in such

environments. In previous work [11] we explored the first

scenario where the user carries intelligent devices which

assist them in their daily activities intermediating with the

environment. On the contrary, this work explores how to

make our living and working environments more

intelligent by adopting standard-based middleware

addressing the flexibility, future-proof, programmability

and intelligence requirements demanded by next

generation intelligent environments.

The “SmartLab
1
: Cooperative and Programmable

Intelligent Working Environment” project aims to provide

a semantic middleware platform to improve the

instrumentation, management and control of current

intelligent environments. In this case, the environment

considered is our heavily instrumented research lab

SMARTLAB (http://www.smartlab.deusto.es), enriched

by a wide assortment of interaction, communication and

computation devices in order to improve the daily

working processes carried out by researchers in it.

This work differs from previous intelligent middleware

platform proposals in its focus on being reliable, future-

proof and self-configurable in its intelligence capabilities,

giving place to next generation intelligent environments,

i.e. programmable, scalable, cost-efficient, evolvable and

based on standards. In a nutshell, SmartLab provides the

software and hardware infrastructure required to add

evolvable intelligence to a living, working or leisure

environment in a simple, extensible and scalable manner.

The following sections describe the SmartLab platform

which integrates sensing, reasoning and actuation over

heterogeneous equipment in an intelligent environment,

independently of its concrete application domain. Section

2 offers an overview of previous related work on

intelligent and semantic middleware for environment

automation. Section 3 reviews the multi-layer architecture

of the SmartLab middleware platform. Section 4 focuses

on the dynamic discovery module of SmartLab. Section 5

describes the ontological and rule-based reasoning

features of SmartLab and analyses its performance.

Finally, section 6 draws some conclusions and suggests

further work.

2 Related Work

There have been quite a few attempts [2][3][6][7] to create

middleware which aims to simplify intelligent

environment deployment, configuration and management.

Among them, quite a few have considered using OSGi

[12], since it is a software infrastructure which ensures

platform and producer independence and easy

1 From now on, the notation SmartLab refers to the research project,

whilst SMARTLAB refers to the research lab.

programmability. It provides an execution environment

and service interfaces to allow the discovery and dynamic

cooperation of heterogeneous devices and services to

guarantee evolution and external connectivity, allowing us

remote control, diagnosis and management. This feature

set explains why OSGi is emerging as a de facto industry

standard [9] for gateways that monitor, control and

coordinate the heterogeneous devices (sensor and

actuators) dynamically deployed in any kind of

environment (house, factory, car or even a research lab as

in the case of SMARTLAB).

However, OSGi does have its limitations and needs to

adapt to the context gathering, reasoning and timely

actuation requirements of ubiquitous computing

environments. For instance, OSGi proposes a centralised

architecture which needs cooperation with network

discovery protocols [5] in order to be aware of remotely

available services. Although OSGi does provide

mechanisms to dynamically install, uninstall or update the

executing services within an OSGi framework, it is not

capable by itself of discovering newly emerging devices

with their associated services. Thus, research efforts such

as R-OSGi [16] have given answer to this issue, by

enabling seamless cooperation among services deployed

in different OSGi servers. The suggested SLP-based

discovery mechanism is in our opinion more resource

demanding than the approach presented in section 4.

Furthermore, although they provide mechanisms to

dynamically discover and consume services they do not

provide mechanisms to enable the automatic cooperation

of several OSGi services without previous knowledge

among them. SmartLab caters with this situation

complementing OSGi bundles with semantic features.

Other researchers have noticed the importance of adding

reasoning capabilities to OSGi servers in order to make

them more suitable for AmI environment management. A

current trend of this regard is to adopt OWL-based [13]

semantic ontologies [1][18] as knowledge repositories

upon which reasoning [10] takes place. Thus, Diaz-

Redondo et al. [3] point out the problems associated to

OSGi and other distributed systems middleware to enable

the spontaneous collaboration of software services without

previous knowledge among them. It is hardly realistic to

suppose that a specific provider knows, a priori, the

interfaces that match other providers’ services. Their

solution approach is to describe OSGi services with their

properties and capabilities through OWL-S[14] so that

other software elements in a residential gateway can

automatically determine their purpose and know how to

invoke them. SmartLab has restricted to model

semantically the inputs and outputs of device representing

OSGi bundles. Although service semantization is a

powerful mechanism it imposes heavy processing

demands not suitable for the embedded devices which

usually populate AmI environments such as SMARTLAB.

Furthermore, it still requires the application programmer

to be aware of the types of services available in an

environment in order to issue appropriate service

composition requests.

Gu et al. [7] decouple OSGi services from the context they

produce and consume. They provide an architecture

named SOCAM which enables the easy construction and

cooperation of context-aware applications or bundles

through context sharing. Inference over the context

published in semantic format (RDF/OWL) is carried out

using both ontological and user provided rule-based

reasoning. The main limitation of their approach is that

they do not leverage on OSGi’s already existing service

registry and even notification mechanisms to register with

context sources and notify events. A key feature that

distinguishes SmartLab from SOCAM and other works is

the ability of augmenting, on the fly, the domain ontology

on which its inference process is performed. Furthermore,

we adopt a more loosely coupled event-based component

programmability model based on OSGi standard services.

LAN or WLAN

Sensing and
Actuation

Layer
(Devices)

…

Semantic Context
& Service

Management Layer
(SmartLab Server) Service

Service
Service

Service

Service

s

Service

Service

Service

Basic

Services

Advanced

Composite

Services

Service Manager

Semantic

Context

Manager

Wired/Wireless Links with Sensor & Actuator Devices

Service
Abstraction

Layer
(Embedded Platform)

…EIB/KNX Bundle
Device Controller Bundle

Embedded Platform

Internet or LAN

Programming,
Management &

Interaction Layer
(Applications)

Context Manager

Front-End

Environment Controller

Widget 1 Widget N…

…

EIB/KNX Ethernet RS-232/UW

VideoIP/VoIP

Bundles

RFID/Ubisense

Bundles

Knowledge

Base &
Rulebase

Rule Engine

Context Processor

Event Manager

Web Interface Gateway

Zigbee

Fig. 1. SmartLab multi-layer architecture.

3 SmartLab Semantic Middleware

The main contribution of this work has been to define a

multi-layer architecture, as shown in Fig. 1, which enables

to configure and deploy intelligent environments more

easily. The following sections describe the four layers in

which such software architecture is divided and the

embedded platform designed to augment everyday objects

with a degree of intelligence and allow its integration with

our software infrastructure.

3.1 Layer 1: Sensing and Actuation

This layer is composed by the set of devices (sensor and

actuators) which populate an environment and constitute

the hardware of the services offered to the user. SmartLab

combines the capabilities of all those devices in layer 1 to

offer advanced intelligent services to the end user in layer

3. Both industry standard and custom-built sensing and

actuation devices have been used:

• EIB/KNX. SMARTLAB has been equipped with an

EIB/KNX automation bus to which lighting, air

conditioning/heating, presence detection and door and

window opening sensors and actuators were attached.

Thus, this bus allows for lighting, temperature or

security automation.

• VoIP and VideoIP. Several Asterisk[4]-compatible

VoIP phones have been installed in SMARTLAB so

that telephony related actuations can be triggered.

Likewise, several IP video cameras have been

scattered throughout the lab, so that surveillance and

security related services can be performed.

• Indoor Location Systems. The Ubisense

(http://www.ubisense.net/) indoor location system has

been deployed in SMARLAB. Such location system

allows tracking users and objects within 20 cm

accuracy. Furthermore, this location system has been

complemented with several Mifare® 13.56 MHz

RFID readers for detecting the presence of people not

wearing Ubisense tags.

• SmartDisplay. This custom-built intelligent device

produced combines an organic screen (µOLED-96-

G1 of 4D Systems) with a WSN mote based on

Mica2DOT operating on band 433 MHz capable of

displaying messages broadcasted by other nearby

sensing motes (see bottom left hand side of Fig. 2).

• SmartChair. This custom-built intelligent chair is the

result of combining two pressure sensors at the base

and back of a conventional chair with a Mica2 mote

which broadcasts the pressure values (see top left

hand side of Fig. 2).

• SmartContainer. This custom-built container resulted

from combining a liquid level sensor with a Mica2

mote alerts every time the water goes over some

limits (see bottom right hand side of Fig. 2).

Fig. 2. SmartChair (top left), SmartLab Embedded

Platform (top right), SmartDisplay (bottom left) and

SmartContainer (bottom right).

3.2 Layer 2: Service Abstraction

This layer transforms the functionality of the devices of

layer 1 into software services. An OSGi bundle

implementing such services has been provided for each of

the device types deployed within SMARTLAB. Thus, in

our model every device type is encapsulated in the form of

a bundle or execution unit within the OSGi environment.

Such bundles are .jar archives which include several

binary files and a manifest file with certain configuration

properties for each bundle. In fact, such bundles rather

than encapsulating the real functionality, they act as

proxies or delegates of such functionality and are

downloadable and installable into OSGi environments

where they process commands issued by other bundles or

third party applications which are propagated to the

devices in layer 1.

A key aspect to consider is where to host the bundles

which act as proxies of physical devices. The obvious

location is the devices themselves. However, this requires

that devices have to have the capability of publishing and

announcing bundles, and, more importantly, serve the

requests received from such bundles once proxies have

been installed in a client OSGi environment. Given that is

not common to encounter physical devices with such

advanced computation capabilities, usually the software

representatives of such devices will be executed in servers

which mediate between the real devices through home

automation buses, serial ports or any other communication

mechanism and the clients of such bundles. Next, the

OSGi bundles corresponding to the sensing and actuation

devices of section 3.1 are described:

• EIB/KNX Bundle. It is located in a PC connected to

the EIB/KNX bus through a BCU (Bus Coupling

Unit) USB interface and executing the KNXnet to IP

tunneling server Tweety

(https://www.auto.tuwien.ac.at/a-

lab/eibdtweety.html). The main mission of this bundle

is to allow message passing from and to the home

automation bus. It exports a range of services

representing each of the EIB devices plugged into the

bus. Thus, if the environment has binary lights it will

register an OSGi service with the interface

IBinaryLight for each of the existing lights in an

environment. Other types of services used are

DimmableLight, Alarm, OpeningSensor or

Heating. The implementation of such bundles has

made use of the Calimero Java library which allows

the communication with the Tweety server earlier

mentioned. This and the following bundles are

exported through the dynamic service discovery and

installation protocol described in Section 4.

• VideoIP Bundle. This bundle registers a service for

each of the four D-Link DCS-5300G PTZ IP cameras

deployed trough SMARTLAB. The service exported

offers methods to capture image stills, move the

camera objective or activate the camera built-in

movement detection mechanism, which uploads the

captured images into an FTP server every time that

movement is detected.

• VoiceIP Bundle. This bundle is located in a PC

equipped with an Ambient MD3200 card which

allows the communication between the Asterisk [4]

software and the telephone system. In fact, this

bundle communicates with a web service in the

Asterisk machine offering functionality such as: a)

user management, b) call management for registered

users, c) text synthesis from text, d) automatic pre-

recorded message alert calls or e) call waiting

message recording.

• Ubisense Bundle. This bundle is hosted in the

machine where the Ubisense location server is

installed. When exported it acts as proxy of a web

service wrapper for the Ubisense DCOM component.

It offers the following functionality to third

applications: a) list people present in a given location,

b) list objects whose location has changed from last

reading, c) notification of appearance, disappearance

and movement of Ubisense tagged-objects.

• Device Controller Bundle. It is responsible of

deploying each SmartLab custom-built device

(remember Fig. 2) as an OSGi service. Such bundles

are published by the SmartLab Mote Communication

server executed within the embedded platform

selected to mediate with our custom devices.

3.3 SmartLab Embedded Platform

SmartLab vision is that small footprint low-cost almost

invisible embedded platforms attached to everyday objects

will foster intelligent environment deployment. These

devices will facilitate the integration of computation and

communication capabilities into everyday objects, which

can then be exported, downloadable and easily

consumable from third party applications. SmartLab has

addressed this idea by assembling an embedded platform

constituted by the following elements:

• A Gumstix Connex 400xm with a 400 MHz

processor, 16 MB Flash memory and 64 MB RAM.

• A Wifistix module which provides Wi-Fi

communication capabilities to the Gumstix module so

that it can connect with a IP to wireless sensor

network (WSN) bridge based on the Crossbow Mica

2 platform, executing in one of the servers of

SMARTLAB.

• A set of Mica2 sensor nodes integrated into the set of

proprietary sensing (SmartChair and SmartContainer)

and actuation (SmartDisplay) devices reviewed.

The Gumstix module acts as gateway between a Wi-Fi

network and a Crossbow Mica2-based WSN constituted

by the objects to which sensor motes have been stuck.

These motes are capable of communicating at 38.4

Kbaudios imposing minimum energy consumption

requirements and exposing a reduced size, which makes

them ideal for integration with everyday objects. The

software image installed in them uses JamVM, compatible

with Java 2, but optimized for devices with reduced

computing resources.

Fig. 3. Environment control of the electronics area within

SMARTLAB: lighting and door opening/closing.

Fig. 4. Surveillance control in SMARTLAB.

3.4 Layer 3: Semantic Context Modelling and Service

Management

The Knopflerfish-based OSGi server which implements

layer 3, namely SmartLab Server, acts as a gateway

between the advanced OSGi services resulted from

combining, often through the OSGi Wire Admin Service,

the functionality offered by the equipment and smart

objects deployed in SMARTLAB and the set of third party

agents which want to exploit such services. Such gateway

is composed of the following three core modules (review

Fig. 1):

• Continuous and Dynamic Environment Service

Management Module. Implemented by the Service

Manager component, it monitors the environment

continuously to determine the appearance and

disappearance of new services provided through layer

2 as result of the activation and deactivation of

equipment within an intelligent environment.

• Semantic Context Management Module. Implemented

through the Semantic Context Manager component, it

provides a semantic inference component which

operates over an ontology where all context

knowledge is gathered. Whenever a new device

bundle is discovered all its semantic metadata is

gathered and added to the ontology constituting the

knowledge base and the domain rules set kept in this

module. It can happen that the rules published by a

device depend on knowledge provided by another

device representing service. It is not required that a

device has a priori knowledge of another device.

However, occasionally it will be needed in case that

knowledge gathered by two or more different device

types wants to be combined and reason upon. This is

the only point when certain coupling among devices

can take place within SmartLab.

• Web Gateway Module. Implemented through the Web

Interface Gateway component, it offers a web based

interface for third party application wanting to

interact with the environment services managed by

SmartLab Server. It behaves both as a web-to-OSGi

service gateway and as an HTTP web controller for

the requests issued by the web gadgets that constitute

the front-end to the advanced services provided by

layer 3. This element translates HTTP requests

generated from interactions over the gadgets controls

into method invocations of OSGi services.

3.5 Layer 4: Service Programmability, Management
and Interaction

It is the top layer of the architecture where the final

applications which make use of the SmartLab

infrastructure lie. Furthermore, it provides two generic

applications which allow controlling and managing an

intelligent environment, namely Environment Controller

and Context-Manager Front-End. Next, these two generic

applications are described:

• Environment Controller. This component offers an

intuitive interface based on the web gadget concept to

control the software services associated to

instrumented objects in the environment or the

advanced services which coordinate the operation of

several of those elements in SMARTLAB. This

environment administrator makes use of small size

web gadgets in order to be accessible from different

clients such as web browsers, tactile screens or

mobile devices.

The web interface developed requires user login.

Once a user has logged in, they can interact with a

right hand side menu, see Fig. 3 and Fig. 4, which

brings on the left hand side a set of gadgets

representing the services available in the

environment. This gadget-based system developed

over the JavaScript library X (http://www.cross-

browser.com/) is completely modular, easing the

creation and incorporation of new user interfaces for

the management and control of new devices

connected to the system.

Any browser both in a PC or mobile device

respecting web standards will be suitable to render

this interface. Developing new gadgets for this

application is also simple. It only requires knowledge

about common web technologies such as HTML, CSS

and JavaScript.

• Context-Manager Front-End. This component offers

a web interface which allows the following

management actions:

a. Management of device-associated OSGi bundles

(activation, deactivation, elimination) and

aggregated services currently active within

SmartLab Server.

b. Modification of the ontology which constitutes

the knowledge base for SmartLab’s reasoning

mechanism.

c. Management of environments’ rule behaviour.

d. Tracking of system log and statistics to verify

SmartLab server’s continuous correct behaviour.

4 Dynamic Discovery of Semantic Bundles

This section explains how conventional OSGi bundles

enhanced with semantic information are dynamically

discovered, analysed, downloaded and installed into

SmartLab Server. That way, this server is always aware of

the most up-to-date range of active environment services.

4.1 Semantically-enhanced OSGi Bundles

Something remarkable about SmartLab is that the bundles

discovered augment semantically the context-modelling

ontology regulating SmartLab Server behaviour with new

concepts (context classes and events) and instances of

such concepts. The operations fulfilled by every SmartLab

OSGi bundle on installation in the server are:

1. The ontology modelling context knowledge within

SmartLab Server is enriched with new device, context

and event representing classes.

2. New behaviour semantic rules are fed into the

inference engine built in within SmartLab Server.

Such engine reasons over the semantic data provided

by the different bundles installed in the server.

3. A set of aggregated event types [10] is specified

which the rules defined by a device bundle may

generate and to which other bundles can subscribe.

On the other hand, during its lifetime, the services

exported by a bundle are continuously publishing

instances of the ontology classes earlier defined, which as

a result fire the rule engine and generate aggregated event

instances.

Every device representing bundle in SmartLab must

implement the ISmartlabService interface for each

service it exports. This interface defines the contract

between the ContextManager component of layer 3 and

the discovered bundle services. The structure of such

interface is the following:

public interface ISmartlabService {

 public String getOntology();

 public String getIndividual();

 public String getRules();

 public String[] getEventsToRegister();

 public void startUpdatingContext();

 public void stopUpdatingContext();

 public String getInterface();

}

The meaning of the methods provided by such interface

which are invoked by the Context Manager is:

• getOntology – returns an ontology with the

device classes, their values and events in RDF/XML

format.

• getIndividual – returns an instance of the device

class with current values for such device in

RDF/XML.

• getRules – returns behaviour rules exported by the

device in Jena [8] rule format.

• getEventsToRegister – returns the names of

types of events in which the bundle is interested.

• startUpdatingContext – the ContextManager

calls this method to request a bundle to start updating

its measures. Such context update is undertaken by

the semantic bundle by invoking the

UpdateContext method of ContextManager.

• stopUpdatingContext – the ContextManager

calls this method whenever a bundle should stop

updating context.

• getInterface – returns the name of the bundle

interface.

Fig. 5. Service Manager Internal Architecture.

4.2 Dynamic Service Management Module

This module allows the continuous and dynamic

publication, announcement, discovery, download,

installation and configuration of distributed services

without requiring server reboot. The following OSGi

bundles cooperate in such process and constitute the

internal architecture of this module shown in Fig. 5:

• Discovery Service Bundle. It implements the

discovery protocol used by both SmartLab Server and

the devices willing to export semantics enhanced

bundles. A simple multicast protocol (see Fig. 6) is

used to announce, discover, obtain bundle and service

metadata and download the corresponding bundle.

• Installer Service Bundle. It decides whether a

candidate bundle should be installed or not. For that,

it uses the meta-information provided by the

discovery mechanism. Given that an OSGi bundle can

define a set of dependencies for their correct

behaviour, this bundle is responsible of ensuring such

dependencies are fulfilled. Such process is undertaken

with the help of an OSGi Bundle Repository (OBR),

which is a repository where the bundle jars are placed

together with an XML description of each of them

and their dependencies.

• SmlURLHandlerService Bundle. Whenever the

installation service discovers a candidate bundle, it

must process the bundle metadata to decide whether

to proceed or not. The discovery and installation

processes are dependent on the protocol supported by

the target device to export the bundle’s .jar file. In

order to make the discovery protocol agnostic to the

code download mechanism used, a URL handler has

been defined, named SmlURLHandlerService which

is compatible with the standard OSGi UrlService.

Thus, the installation service can obtain both the

metadata and the .jar file through an URL (starting by

sml://), without having to know the internal details

about how that data is really gathered.

• LocalRepositoryService Bundle. It stores the bundles

downloaded. This repository is updated every time a

new bundle .jar is received or an earlier discovered

bundle has stopped sending heartbeats (ANNOUNCE

protocol message) generating a new version of the

XML file describing its contents. The basic

functionality of an OBR is already provided by

Knopflerfish. This OBR has only been complemented

by the Installer Service with the

LocalRepositoryService bundle. The installer service

decides whether to install or not a specific bundle by

checking the LocalRepositoryService XML file.

• OSGi Configuration Service. Given that bundles are

installed (an uninstalled) automatically and, in most

cases, they manage a remote device or service, very

often some dynamically changing configuration

details (IPs, ports and so on) must be supplied to

update the internal configuration of the services

registered by a bundle. With that objective the

parameters which may change are declared in the

bundle manifest. Those parameters are loaded and

managed from then on by the OSGi Configuration

Admin.

Fig. 6. Service Discovery Protocol Messages.

5 Semantic Context Management

The Semantic Context Manager component, shown in

layer 3 of Fig. 1, consists of three main elements, which

are further detailed in Fig. 7:

• Context Processor. This component gathers the

context supplied in semantic format by the deployed

services and populates with it SmartLab Server’s

context ontology knowledge base. An example of

this is the data gathered from a location system.

Initially, these data are only several real numbers, but

the semantization process within each SmartLab

OSGi bundle interprets them and adds semantic

information, indicating that X and Y refer to the

position on an object and that those values are relative

to a given reference point:

<BinnaryLight rdf:ID="LightArea2">

<placedIn rdf:resource="#LockerRoom"/>

<name rdf:datatype="XMLSchema#string">

LightArea2

</name>

<x>23.3</x>

<y>45.5</y>

</BinnaryLight>

• Context Reasoner. It augments the context

information making explicit hidden implicit

information. For that, it uses both the semantic

relations of the SmartLab ontology and the rules

designed for a specific domain (e.g. SMARTLAB

research lab). After new context information is

inferred new reactive behaviour is produced

triggering events such as: “there is a meeting”, “there

is flood”, “person X entered in room Y” and so on.

• Event Manager. It transforms the notifications

generated on the right hand side (RHS) of

SMARTLAB domain rules into non-semantic OSGi

EventAdmin-compatible events. Besides, with the

help of OSGi EventAdmin, it maintains a registry of

all events for which interest has been expressed.

Internally, it checks continuously SmartLab’s RDF

knowledge base through SPARQL to find out newly

generated events.

Sensor Services (Internal sources)

Location

Service
Time Service

FlexChair

Service

Temperature

Service

Luminosity

Service

Planning

Service

External sources

GeoMapping

Service

Weather

Service

Dictionary

Service
GPS Service

Knowledge Base
Context Reasoner

Context Manager

KB Handler

Context Rules

C
o
n
te
x
t
in
fo

C
o
n
te
x
t
in
fo

Domain Rules

Actuator Services

Fan Service Ligh Service

VoIP Service
Screen
Service

FlexDisplay

Service

Planning
Service

E
v
e
n
t

Service Discovery

Sensors

Actuators

Event Reasoner

Fig. 7. Semantic Context Manager Architecture.

The following steps illustrate the context reasoning

process undertaken within SmartLab Server:

1. SmartLab knowledge base is fed with context

information in semantic format provided by the

different services installed in SmartLab Server.

2. After updating such semantic model, the inference

engine provided by Jena firstly enhances the RDF

triples currently available with newly inferred ones

and secondly finds domain rules which trigger in their

RHS the generation of aggregated events associated

to reactive behaviour to be performed by the devices

deployed in SMARTLAB.

3. Aggregated event notification is produced after

mapping the semantic events generated into OSGi

events. Such events are broadcasted automatically by

OSGi EventAdmin to the SmartLab bundles that

registered interest on the type of events generated.

4. The notified bundles use the event information to

generate the associated reactions. For instance, make

a call through Asterisk, switch on the lights through

EIB and so forth.

5.1 SmartLab Generic Context Ontology

The knowledge base in SmartLab is modelled by an

ontology, which offers the following advantages:

• The knowledge base is expressed in

XML/RDF/OWL, a standard set of languages which

can be easily processed by applications.

• An ontology can be easily extended with new entities

without affecting the already existing ones.

• Several ontologies can be combined in an easy

manner providing there are entities in common. Thus,

other applications can expand this knowledge base,

enhancing and improving it in this manner.

• The semantic relations expressed in the ontology

allow making explicit the implicit knowledge in a

simple manner.

This ontology has been designed taking into account

earlier semantic AmI systems [1][7]. Three key elements

within the ontology have been identified which model

context for any intelligent environment: “where”, “when”

and “who”. Therefore, the main elements of this ontology

are space, time, actors (people, agents or devices) and

events:

• TimeItem – class which models time.

• SpatialItem – class which models locations.

• LocableItem – assigns locations to entities.

• Event – context changes which occur at a specified

time at certain location.

5.2 Knowledge Generation in SmartLab

SmartLab uses two knowledge generation mechanisms

based on reasoning over its generic context modelling

ontology: a) ontological reasoning and b) rule-based

reasoning. Ontological reasoning makes use of the RDF

predicates: rdf:domain, rdf:range, and

rdf:type; the RDFS predicates:

rdfs:subPropertyOf, rdfs:subPropertyOf;

and the OWL ones: owl:TransitiveProperty,

owl:SymmetricProperty and owl:inverseOf.

Such predicates are used to infer implicit knowledge from

the explicit knowledge gathered in the form of RDF triples

in the SmartLab Server’s knowledge base. On the other

hand, rule-based reasoning can be used to define relations

among entities in the generic ontology which relates

space, time and actors and which cannot be expressed

through RDF, RDFS and OWL predicates. For example,

the following rule specifies when an event ?ev1 should

be considered to have happened before event ?ev2.

[TEMPORAL1-eventInstantBefore:

 (?ev1 rdf:type

<http://deusto.es/smartlab.owl#Event>),

 (?ev1 <http://deusto.es/smartlab.owl#time>

?ins1),

 (?ins1 <http://deusto.es/smartlab.owl#value>

?v1),

 (?ev2 rdf:type

<http://deusto.es/smartlab.owl#Event>),

 (?ev2 <http://deusto.es/smartlab.owl#time>

?ins2),

 (?ins2 <http://deusto.es/smartlab.owl#value>

?v2),

 lessThan(?v1,?v2)

->

 (?ev1 <http://deusto.es/smartlab.owl#before>

?ev2)

]

Finally, it is very important to model the knowledge and

behaviour of a concrete application domain as is the case

of SMARTLAB, which is equipped with a range of device

types to facilitate the activities of researchers. For

instance, the following rule would determine that a

meeting is taking place in SMARTLAB whenever there

are at least two people in the meeting area. Observe that

the SmartLab OSGi bundle responsible of activating the

elements to run a meeting (show presentation in projector,

switch on heating, regulate lighting, and so on) would not

only register the following rule with the Context Manager

but it would also enrich the generic ontology with

concepts such as MeetingArea which hierarchically

depends on SpatialItem and more concretely in the

concept of Area shown in Fig. 8.

[EVENT-Meeting:

(?meetingArea rdf:type

<http://deusto.es/smartlab.owl#MeetingArea>),

(?meetingArea

<http://deusto.es/smartlab.owl#containsPersonItem

> ?p1),

(?meetingArea

<http://deusto.es/smartlab.owl#containsPersonItem

> ?p2),

 (?p1 <http://deusto.es/smartlab.owl#name>

?name1),

(?p2 <http://deusto.es/smartlab.owl#name>

?name2),

notEqual(?name1, ?name2),

makeTemp(?meetingEvent)

->

(?meetingEvent

rdf:type<http://deusto.es/smartlab.owl#LocableMee

tingEvent>),

(?meetingEvent

<http://deusto.es/smartlab.owl#place>

?meetingArea)

(?meetingEvent

<http://deusto.es/smartlab.owl#name> ?name1)

(?meetingEvent

<http://deusto.es/smartlab.owl#name> ?name2)

]

Fig. 8. SpatialItem Class Hierarchy.

5.3 Knowledge Reasoning in SmartLab

As mentioned, SmartLab undertakes two types of context

reasoning: ontology- and rule-based reasoning. Therefore

an important design decision was to choose whether to

combine both types of reasoning in the same reasoning

engine or use two different engines. The main problem of

using separate engines is that knowledge must be

continuously exchanged between both engines, there is no

common knowledge base. On the other hand, using an

embedded reasoning engine within the ontological engine

would not allow the ontological engine to observe the

changes undertaken by the rule-based engine over the

latest ontological knowledge base snapshot. The main

advantage of using a single engine is that no knowledge

interchange is required. Besides, only a reduced set of

OWL predicates may be regarded for ontological

reasoning if the whole set is not required, so reducing the

overall resource demands. However, the main restriction

is that the OWL semantic predicates have to be re-

expressed in the chosen rule format.

The following example shows how to express the OWL

predicate owl:inverseOf as a semantic rule in our

chosen (Jena) rule format. In order to simplify the

definition of such transformations we have made use of

the theoretic models of RDF, RDFS and OWL[13].

OWL-InverseOf:

 (?x ?prop1 ?y),

 (?prop1 owl:inverseOf ?prop2)

 ->

 (?y ?prop2 ?x)

]

Jena rule engine’s forward chaining inference capabilities

allow the Context Manager to undertake three types of

inference divided in two phases. In the first phase, the

engine extracts the knowledge implicit in the ontology and

processes its semantic relations to expand the knowledge

base. Then, in the second phase, making use of the

expanded knowledge base it infers actions to be carried

out by the system, i.e., it generates the events that the

actuation bundles respond to. Three types of rules have

been defined:

• Semantic rules – they are divided in two

subcategories: RDF and OWL. In order to implement

such rules the theoretical models of both

specifications have been analysed. Only rules that

extend the knowledge base using semantic relations

have been considered.

• Knowledge extraction rules – they enable extracting

high level knowledge from the ontology implicit

knowledge. The three main aspects modelled on the

system are what, when and where. Therefore, the

knowledge inferred is based on time and location.

Among other things, these rules order events and find

out the physical relations among them.

• Event-inferring rules – they generate aggregated

events from the context currently stored in the

knowledge base. They reason over the existing

explicit or generated knowledge to reason upon it and

infer what events should be launched. Although the

knowledge extraction rules can be extrapolated to any

AmI application and domain (factory, car, home,

laboratory), the event inferring rules depend on the

specific domain considered. These rules define the

behaviour of a specific type of environment. Thus, to

illustrate this point two types of rules have been

defined related to the SMARTLAB domain: meeting

rules and security/safety rules. These rules alert the

bundles interested on easing meetings, or increasing

the environment safety (prevent floods) by switching

off equipment or closing doors. The previously

reviewed EVENT-Meeting rule shows how to

generate a MeetingEvent whenever there are at

least two people in the meeting area.

5.4 Performance of Knowledge Inferring Process

Adopting a semantics-based reasoning mechanism is very

powerful. However, currently available reasoning engines

still do not offer great performance. In order to assess this

point we have carried out several tests to determine the

performance of ContextManager in two situations: a) the

inclusion of new semantic information and b) the rule-

based reasoning process. It is important to note that

whenever the SmartLab ontology is upgraded with new

concepts such as classes or events, a validation process is

carried out that ensures the continuous validity of it. This

process obviously delays the reasoning process but it is

compulsory to guarantee the ontology integrity.

Concretely, the discovery of several devices which

register their ontology extensions, individuals and rules

has been emulated. The tests have been repeated

considering 5, 10, 20, 50 and 100 different devices. The

following measurements have been taken:

• Registry time – represents the time invested in

introducing the semantic information added by a

device to the default SmartLab ontology and the

device’s behaviour rules to the SmartLab rule base.

• Inference time – represents the time required to

introduce the context information, e.g. temperature

value change, and the rule based inference process

resulted from this change is concluded.

• Average triples, classes, individuals and rules – gives

an idea of the size of the knowledge base in every

case considered.

 5

Devices
10

Devices
20

Devices
50

Devices
100

Devices

Average

Registry
Time (ms)

506 527 415 535 1000

Average
Inference
Time (ms)

1854 2620 3671 9944 27827

Average
triples

866 965 1164 1656 2329

Average
clases

112 123 143 203 303

Average
individuals

66 84 121 194 269

Average
rules

29 35 45 75 125

Table 1: Context Manager Performance Tests

Table 1 illustrates the results obtained by the Context

Manager component when registering new semantic

concepts and performing its reasoning process in average,

taking into consideration the cases where 5, 10, 20, 50 and

100 devices are simultaneously generating new context

inputs. Obviously, the more services the system has to

cope with the worse performance it is obtained. The

average reasoning time obtained after a context change

has been produced ranges from 1.8 (acceptable) to 27.8

(non-acceptable) seconds when passing from 5 to 100

concurrent active devices.

6 Conclusion and Further Work

This work has presented some middleware extensions to

the OSGi framework in order to cater for the evolution

and self-configuration needs of Intelligent Environments.

An environment configuration changes continuously

across time and the management middleware must adapt

to those changes seamlessly. The SmartLab Service

Manager component proposed is capable of discovering

newly emerging exporting services devices and to find out

when earlier discovered services become unavailable.

Furthermore, this service manager is capable of dealing

with SmartLab bundles, i.e. standard OSGi bundles

augmented with semantic metadata. Such metadata allows

both the knowledge and rule bases of an environment,

such as SMARTLAB, to be upgraded on the fly through

the SmartLab Semantic Context Manager component.

Consequently, the concepts modelled and the behaviour

rules which regulate the reactivity of the environment are

automatically and dynamically adapted to the latest

configuration, i.e. devices deployed, of an environment,

without user intervention.

Further work will tackle the performance issues identified

in section 5.4, regarding semantic rule-based reasoning.

These performance problems are partly due to the use of a

non-optimized rule engine in our experiments. Adopting

semantic technologies to model and reason about

environment context and services is undoubtedly very

flexible and powerful, but unfortunately imposes higher

resource requirements than other more conventional

modelling and reasoning techniques such as RDBMS or

traditional rule engines (CLIPS, Jess). In future work, we

will replace the Jena reasoning engine by other more

sophisticated rule engines such as Pellet [15] and work on

the optimization of the results obtained. In addition,

another area of improvement will be to semantize not only

the context provided by bundles but also the services they

offer. Thus, we will enable the automatic composition of

OSGi services’ functionality without user supervision but

attending to the specific needs of third-party users.

Acknowledgements

Thanks to the Industry, Commerce and Tourism

Department of Basque Government for sponsoring this

work through grant S-PE06FD02 of the SAIOTEK 2006

program.

References

[1] H. Chen. An Intelligent Broker Architecture for

Pervasive Context-Aware Systems. PhD thesis,

University of Maryland, Baltimore County, 2004.

[2] A.K. Dey. Providing Architectural Support for

Building Context-Aware Applications, PhD thesis,

Georgia Institute of Technology, 2000.

[3] R. P. Díaz Redondo, A.F. Vilas, M.R. Cabrer, J.J.

Pazos Arias, J. García Duque, A. Gil Solla.

Enhancing Residential Gateways: A Semantic OSGi

Platform. IEEE Intelligent Systems, vol. 23, no. 1,

January/February 2008, pp. 32-40

[4] Digium Inc. Asterisk: The Open Source PBX &

Telephony Platform. http://www.asterisk.org/,

February 2008

[5] W. K. Edwards. Discovery Systems in Ubiquitous

Computing. IEEE Pervasive Computing, vol. 5, pp.

70-77, 2006.

[6] A. Helal, W. Mann, H. Elzabadani, J. King, Y.

Kaddourah and E. Jansen. Gator Tech Smart House:

A Programmable Pervasive Space. IEEE Computer

magazine, March 2005, pp 64-74.

[7] T. Gu, H.K Pung, D.Q. Zhang. Toward an OSGi-

Based Infrastructure for Context-Aware Applications.

IEEE Pervasive Computing, vol.3, no. 4, October

2004, pp. 66 - 74, ISSN:1536-1268

[8] Jena Semantic Web Framework.

http://jena.sourceforge.net/, February 2008.

[9] C. Lee, D. Nordstedt, and S.Helal. Enabling Smart

Spaces with OSGi. IEEE Pervasive Computing, vol.

2, no. 3, July-Sept. 2003, pp. 89 – 94

[10] D. López-de-Ipiña et al. An ECA Rule-Matching

Service for Simpler Development of Reactive

Applications, IEEE Distributed Systems Online, vol.

2, no. 7, 2001.

[11] D. López de Ipiña, J.I. Vázquez, D. García, J.

Fernández, I. García, D. Sainz and A. Almeida. A

Middleware for the Deployment of Ambient

Intelligent Spaces. Ambient Intelligence in Everyday

Life, Springer, LNAI 3864, ISSN 0302-9743, pp. 239-

255, 2006

[12] OSGi Alliance, OSGi Alliance Home Site;

http://www.osgi.org/Main/HomePage, February.

2008.

[13] OWL Model Theory. ONLINE.

http://www.w3.org/TR/2002/WD-owl-semantics-

20021108/, February 2008

[14] OWL-S: Semantic Markup for Web Service.

http://www.w3.org/Submission/OWL-S/, February

2008

[15] Pellet: The Open Source OWL DL Reasoner.

http://pellet.owldl.com/, February 2008

[16] J. S. Rellermeyer, G. Alonso, T. Roscoe. R-OSGi:

Distributed Applications through Software

Modularization. Proceedings of the

ACM/IFIP/USENIX 8th International Middleware

Conference Conference (Middleware 2007), Newport

Beach, CA, 2007

[17] N. Shadbolt, Ambient Intelligence, IEEE Intelligent

Systems, vol. 2, no.3, 2003

[18] Wang XH, Zhang DQ, Gu T, Pung HK. Ontology

Based Context Modeling and Reasoning using OWL.

Proceedings of the Second IEEE Annual Conference

on Pervasive Computing and Communications

Workshops, 2004.

