
wCloud: automatic generation of WebLab-Deusto
deployments in the Cloud

Pablo Orduña∗, Aitor Gómez-Goiri∗, Luis Rodriguez-Gil∗, Javier Diego†, Diego López-de-Ipiña∗, Javier Garcia-Zubia∗
∗DeustoTech - Deusto Institute of Technology

University of Deusto, Bilbao, Spain
Email: {pablo.orduna,aitor.gomez,luis.rodriguezgil,dipina,zubia}@deusto.es

†CGI
Madrid, Spain.

Email: javier.diego@cgi.com

Abstract—Educational remote laboratories are software and
hardware tools that allow students to remotely access real
equipment located in universities as if they were in a hands-
on-lab session. Since most remote labs share certain manage-
ment tasks (authentication, Learning Analytics, scheduling, etc.),
software systems implementing them on top of which remote
labs could be implemented were developed and called Remote
Lab Management Systems (RLMS). A key feature provided by
certain RLMSs is sharing a remote laboratory between two
systems deployed in two institutions. This way, it becomes possible
to have multiple RLMS instances (which are pure software)
in a Cloud environment, customized for different schools or
universities. Each school would have its own RLMS, with all
the management features (e.g., managing its own students), and
in the end, the RLMS would connect to the RLMS which has the
physical equipment. The focus of this contribution is to detail how
this “RLMS as a Service” is being implemented in the case of
WebLab-Deusto as part of the mCloud project, from a technical
point of view.

I. INTRODUCTION

A remote laboratory is a software and hardware tool that
allows students to remotely access real equipment located in
the university. Users access this equipment as if they were
in a traditional hands-on-lab session, but through the Internet.
To show a clear example, Figure 1 shows a mobile low cost
robot laboratory described in [1]. Students learn to program
a Microchip PIC microcontroller, and they write the code at
home, compile it with the proper tools, and then submit the
binary file to a real robot through the Internet. Then, students
can see how the robot performs with their program through
the Internet (e.g., if it follows the black line according to the
submitted program, etc.) in a real environment.

With time, several remote laboratory developers had to
develop different remote labs of different nature. Instead of
starting from scratch when developing these new remote lab-
oratories, they started building software systems that could be
reused among these different labs. This way, the development
was splitted in two blocks: the laboratories code (e.g., the
connection with the real equipment and the logic of the
laboratory), and the management code (e.g., authentication,
authorization, scheduling, user tracking mechanisms or admin-
istrative tools). These systems have been called Remote Labo-
ratory Management Systems (RLMS). This way, a fair degree
of shared development of remote laboratories is achieved: if

one (or more than one) institution develops a RLMS, other
institutions developing their remote laboratories on top of this
RLMS will not need to develop those features again and will
instead use that RLMS. A key feature of these systems is that
they can share the managed laboratories to other systems in
other universities.

So as to gain adoption, these RLMS could be installed
in schools or universities which are not developing their own
remote laboratories. For example, a secondary school could
install their own RLMS in a server, and manage their own
students, while using remote laboratories deployed in other
universities. This way, there could be students, groups of
students, teachers could decide which groups would have
permissions on what laboratories, and finally teachers could
track the usage of their students. Students and teachers would
have a RLMS with the logo of their school.

However, deploying a RLMS is not a trivial issue for most
schools, which might not have an IT services department,
servers, or time or resources to deploy and maintain these
RLMS. In this context, it is more suitable if RLMS developers
provide a cloud approach where the RLMS is deployed auto-
matically in the servers of the institution. This way, teachers
would have the same benefits without requiring expensive
resources.

The focus of this contribution is to explain how wCloud
manages this with the WebLab-Deusto RLMS, using tools
developed in the Spanish mCloud project.

II. REMOTE LABORATORIES FEDERATIONS

This section introduces the concepts of Remote labora-
tories, Remote Laboratory Management Systems and remote
laboratory federations.

A. Remote Laboratories

A remote laboratory is a software and hardware tool that
allows students to remotely access real equipment located in
the university. Users access this equipment as if they were
in a traditional hands-on-lab session, but through the Internet.
To show a clear example, Figure 1 shows a mobile low cost
robot laboratory described in [1]. Students learn to program
a Microchip PIC microcontroller, and they write the code at

Fig. 1. Robot laboratory [1]. At the left, the mobile robot itself. At the right,
the user interface once the program has been submitted.

home, compile it with the proper tools, and then submit the
binary file to a real robot through the Internet. Then, students
can see how the robot performs with their program through
the Internet (e.g., if it follows the black line according to the
submitted program, etc.) in a real environment.

In this line, there are many examples and classifications in
the literature [2], [3]. Indeed, remote laboratories were born
nearly two decades ago [4], [5], [6], and since then they have
been adopted in multiple fields: chemistry [7], [8], physics [9],
[10], electronics [11], [12], robotics [13], [14] and even nuclear
reactor [15].

B. Remote Laboratory Management Systems

Every remote laboratory manages at least a subset of the
following features: authentication, authorization, scheduling
users to ensure exclusive accesses –typically through a queue
or calendar-based booking–, user tracking and administration
tools. These features are common to most remote laboratories,
and are actually independent of the particular remote labo-
ratory settings. For example, an authentication and queuing
system is valid both for an electronics laboratory and for a
chemistry laboratory.

For this reason, Remote Laboratory Management Systems
(RLMSs) arose. These systems (e.g., MIT iLabs1, WebLab-
Deusto2 or Labshare Sahara3) provide development toolkits
for developing new remote laboratories, as well as manage-
ment tools and common services (authentication, authorization,
scheduling mechanisms). The main idea is that by adding a
new feature to one of them (e.g., supporting LDAP, or LMSs),
all the laboratories which are developed on top of them will
support this feature automatically.

C. Federating Remote Laboratories

One of the features that RLMSs started supporting was
federating their remote laboratories. For example, if two uni-
versities (University A and University B) install a particular
RLMS, they support federation protocols so University A
shares a laboratory with students of University B without

1http://ilab.mit.edu
2http://weblab.deusto.es
3http://labshare-sahara.sf.net

knowing these students. The key here is that the provider
university does not need to register particular students, but
rather groups or simply universities. It is the consumer system
who defines that a set of local users can access a particular
laboratory of the provider system.

Therefore, the relationship between two federated entities
is the following:

• The consumer system manages the authentication and
authorization of its students.

• The provider system manages the scheduling and the
access to the laboratories, storing what the users did.

• The consumer system will later ask for results to the
provider system.

• In every moment, the provider system does not need
to know anything related to the particular students.

These federation protocols have been used for foster-
ing interoperability between RLMS [16]. These interoperable
bridges between different systems can be enhanced if proper-
ties such as transitivity or federated load balance are provided
[17].

III. RLMS AS A SERVICE

Through the federation protocols, the consumer RLMS
does not need to have equipment connected and can become
a purely software system. One school or university could have
a RLMS deployed, and access laboratories deployed in other
institutions. This way, the institution could be in charge of the
students, groups of students, permissions of groups on foreign
resources, or Learning Analytics tools [18] for instructors
evaluating their students. Figure 2 shows two of the scenarios
of Learning Analytics available to teachers using the system.

However, deploying a RLMS might not be convenient
neither feasible in all the situations. For instance, schools might
not have an IT department willing to download, install and
maintain such server. Lecturers of certain universities might be
interested in using a RLMS to access laboratories but might
not have the skills, interest, resources or time to perform the
whole process.

If RLMS providers created a system that enables external
users to create institutional deployments in a Cloud basis,
it would be much easier for the potential audience willing
to use laboratories to adopt them. Lecturers would use it
as a regular cloud service, and they would benefit from all
the features provided by the RLMS: managing their students
and permissions, renaming experiments or descriptions on the
laboratory, and they would keep a detailed track of what users
did on the final laboratory.

This concept could be compared to how Wordpress, the
Open Source popular web solution for developing websites
or blogs. Wordpress.org4 provides the Open Source software
and documentation on how to deploy it and manage it. Many
corporate and personal blogs rely on this software, deployed in
their servers and with no dependency on the original authors
(except for updates, which are also free and Open Source).

4http://wordpress.org/

Fig. 2. Examples of Learning Analytics available to registered users

This model has created a community of people creating
themes, plug-ins, tutorials and so on on how to work with this
software. The initial release was published on 2003. However,
to install the web application you need a server or hire a cloud
environment and install it managing the databases, managing
the network and providing maintenance. This is a problem for
its adoption among those users who do not have the skills, time
or resources to do so. To solve this, in 2005 Wordpress.com5

was created to fill this problem. On Wordpress.com, any user
can create a new blog, and start working on it from the very
beginning, installing themes and plug-ins from a repository
of audited themes. Wordpress.com, hosting this service, does
not support advanced users changing some parts of the code,
and it stores everything (users, uses, etc.) on their servers, but
this solution is more convenient for many users than requiring
everybody to manage their own system.

Relying on this concept of “RLMS as a Service”, WebLab-
Deployer [19] was developed as an ad hoc solution. It aims to
provide the same benefits: WebLab-Deusto is an Open Source
system that anyone can download, install and manage for
free; but WebLab-Deployer enables users not willing to do the
whole process to use instances of WebLab-Deusto deployed
in remote servers. It created WebLab-Deusto6 instances in
external servers provided by the University of Deusto, so
anybody could request an institutional deployment and use

5http://wordpress.com
6http://weblab.deusto.es

it. Internally, this was translated in running certain scripts
that would create a whole WebLab-Deusto environment and
database for the particular institution. As part of the Spanish
mCloud project7, where tools for migrating applications to the
Cloud have been developed8, this project has had a major
upgrade to be compatible with certain Cloud technologies
explained in the rest of the contribution, and it has been
renamed as wCloud.

IV. CLOUD COMPUTING

During the mCloud project, different Cloud technologies
and approaches were analyzed. This section covers a summary
of the decisions taken in the context of the mCloud project.
The mCloud project is focused on making it possible to migrate
regular applications to a Cloud environment [20], [21].

A. Public and private Clouds

A Cloud system heavily relies on virtualization technolo-
gies so a set of real servers virtualize a higher number of
virtual machines. Using this virtualization, several advantages
arise: a virtual machine can be disconnected from one real
server and moved to other, its resources can be increased
(e.g., adding or removing RAM, hard disk drive), it can be
paused to make backups of the whole machine, etc. One of
the most interesting features is the fact that you can resize the
amount of resources dedicated to an application dynamically.
For example, an application can be using a single server, and if
the load of users is increased considerably affecting the quality
of service, one or more virtual machines can be started and
the load of users can be balanced among the different copies.
As the load of users decreases, these virtual machines can be
paused or stopped.

The most popular usage when refering to the Cloud is re-
lying on companies providing virtual machines (in the case of
IaaS –Infrastructure as a Service–) or application environments
which after all are running in certain virtual machines (in the
case of PaaS –Platform as a Service–), or services. This is
considered a public cloud, since users are relying on companies
which, at certain costs, are publicly providing access to their
resources. However, it is also possible and useful to have
private clouds, where a company can have a set of servers
deployed indoors, and build a cloud on top of it.

For example, a company developing multiple applications
can be interested on having its own infrastructure, and use
a cloud technology to deploy the different applications on
virtual machines that will be running and sharing the same
resources. If there are peaks on one application, it could use
a bigger amount of the resources during the peak, while other
applications could take those resources in different moments.
There are a set of technologies to implement this, but the most
popular Open Source technology for this is OpenStack.

B. OpenStack

OpenStack9 is the most popular technology for creating pri-
vate and public clouds. It is developed by a big consortium of

7http://innovation.logica.com.es/web/mcloud
8https://github.com/mcloudpy
9http://www.openstack.org

Fig. 3. OpenStack dashboard

companies including IBM, Intel, HP, Cisco Systems, Red Hat
or Canonical among others10, where the 8 platinum members
must contribute each $500k USD plus 2 full time employees, in
addition to the Gold members, corporate sponsors and others,
becoming one of the largests Open Source projects.

In the context of mCloud, an OpenStack system has been
deployed in three servers indoors, creating a private cloud.
Through the user interface (see Figure 3), the administrator
can create projects, asign resources to these projects, and let
users managing those projects to create virtual hard disk drives,
virtual networks, virtual machines, and connect each other.
OpenStack provides also a REST programmable API that can
be used to create applications on top of it, controlling the
resources or implementing different policies. The system also
provides advanced features in security or tools such as LBaaS
(Load Balancers as a Service), which relies on HAProxy.

C. CloudFoundry

CloudFoundry11 is an extensible, Open Source, Platform
as a Service (PaaS) software which is becoming the most
popular Open Source PaaS system. As opposed to OpenStack,
this tool provides a development platform, where developers
can upload their applications directly, developed in a number
of programming environments. Typically, an administrator
deploys CloudFoundry on top of a IaaS (which can be Open-
Stack, Amazon Web Services or others supported). Then, the
administrator adds a set of common services, such as relational
databases (such as MySQL, PostgreSQL), NoSQL databases
(such as Redis, MongoDB) or queuing services (such as Rab-
bitMQ). Once these services are registered, the administrator
can add a set of programming frameworks available (e.g., Java

10http://www.openstack.org/foundation/companies/
11http://www.cloudfoundry.org

servlets, Node.js or so). Finally, it will manage which users
can deploy applications to which machines and access which
services. Then, a developer can upload a Java application to
the CloudFoundry instance, and internally the system manages
the required virtual machines. Developers do not have access
to the virtual machines running the programming platform, so
they are working in other layer, where all the internals are
managed by the IaaS, while some details can be tuned by the
PaaS administrator depending on the selected IaaS.

While in the context of mCloud, CloudFoundry is used
in other scenarios for its simplicity, it was considered that
WebLab-Deusto would not suit in its current form the sup-
ported frameworks, so it was not used for the wCloud project.

D. Tools developed

So as to support some of the features missing in OpenStack
(since it is a IaaS), some applications were implemented12.
The most relevant ones are rstatus, which is an extensible load
balancer system which relies on libcloud13 (an Apache project
to manage different IaaS environments such as OpenStack,
RackSpace or Amazon Web Services using a single API), so it
is possible to deploy a certain service on the virtual machines
in OpenStack and in certain programmable circumstances
(such as the load of users using WebLab-Deusto), load or
stop virtual machines. Changes in libcloud were required and
contributed to implement this tool.

V. WCLOUD

This section describes the wCloud system from a functional
and technical perspective.

A. Functional description

The wCloud system14 is an Open Source system15 that
creates WebLab-Deusto instances automatically as requested
by users. To create a customized WebLab-Deusto environment,
lecturers can log in and create an account. Once they have
created an account, they will be able to provide an institution
name, image, base URL, link and Google Analytics number, as
well as some parameters such as the username and password
of the administrator. Once provided, the creation process will
be started, and a WebLab-Deusto instance will be available
with such configuration. Figure 4 shows two screenshots of
this process, and Figure 5 shows an example of customized
WebLab-Deusto.

The following is a set of examples of the deployments
created as part of the OLAREX project:

• https://cloud.weblab.deusto.es/w/nfsg/

• https://cloud.weblab.deusto.es/w/school32/

• https://cloud.weblab.deusto.es/w/abadinobhi/

• https://cloud.weblab.deusto.es/w/kmai/

• https://cloud.weblab.deusto.es/w/kharkov/

12https://github.com/mcloudpy/
13https://libcloud.apache.org
14https://cloud.weblab.deusto.es
15https://github.com/weblabdeusto/weblabdeusto/

Fig. 4. wCloud user interface when creating a new instance

Fig. 5. Customized WebLab-Deusto system for NFSG

B. Technical description

A typical deployment of WebLab-Deusto uses a MySQL
database16 for persistent storage (users, permissions, analytics)
and a Redis database17 for scheduling. Redis is an efficient
NoSQL database that stores information in memory and pro-
vides a small set of data types with atomic operations. So as to
support user load balancing, WebLab-Deusto runs in multiple

16http://www.mysql.com
17http://redis.io

processes, and an Apache server proxies the requests to the
different processes. Since sessions are temporally stored in
memory in each process, Apache uses a technique called sticky
sessions to manage it. In this technique, each process stamps
on the first request a cookie establishing that the requests of
this particular session are managed by that particular process.
This way, clients will send it in the following requests, and
Apache, if the cookie is present, will always forward the
requests to the selected process. More details are available in
the documentation18.

In its origins, WebLab-Deployer was a Flask application
that relied on:

• A pool of available databases. There was a cus-
tomizable number of available databases (e.g., 1000
databases created called wcloud0000..wcloud1000).
wCloud in its own database had an internal counter
and whenever somebody created a new WebLab-
Deusto instance, the counter would be increased and
that instance would use one of those databases.

• A local server run as root (administrator user in UNIX
systems) that was waiting for HTTP requests from
the same server. Whenever a new WebLab-Deusto
system was created, it would add a file with certain
Apache configuration and would reload the Apache
server configuration.

• A local server that managed a memory queue and
would be creating the deployments. Basically, if mul-
tiple users create a WebLab-Deusto environment, they
are queued in this process.

The system was not reliable and there were issues between
the different components, so it was redesigned. wCloud is
nowadays a Flask application, but Celery19 (a distributed task
queue which can be deployed on top of RabbitMQ20 or Redis)
is used to avoid managing the queue directly. This way, there
is no need to have two more servers: one process as root
is waiting for Celery tasks in the queue that establish that
the Apache configuration must be reloaded, and it reloads
the Apache configuration; other process is waiting for Celery
tasks that require. Additionally, databases can be created
automatically as long as they have a prefix, and this way
keeping such database pool is not required anymore.

In addition to this, wCloud was tested in the OpenStack
in Section IV-B. As seen on Figure 6, five Virtual Machines
were started with WebLab-Deusto deployed. One of the virtual
machines contained the shared databases (both Redis and
MySQL), while in the future Trove21, the OpenStack DBaaS
(Database as a Service) service should be used, while a new
version would be required. The rest support the different
components of WebLab-Deusto and wCloud, being able to
create more web instances in more virtual machines.

C. Required changes in WebLab-Deusto

Already for the original WebLab-Deployer system, it was
required to support that a WebLab-Deusto system, including

18http://weblabdeusto.readthedocs.org
19http://www.celeryproject.org
20http://www.rabbitmq.com
21http://docs.openstack.org/developer/trove/

Fig. 6. Five Virtual Machines deploying WebLab-Deusto

its database, etc. could be created in a fully automated process,
with no human interaction. However, so as to fully embrace
the cloud environment paradigm, it is mandatory to support
other features, of which most have been implemented:

• Reduce the number of ports used. WebLab-Deusto
used to create 10 ports per process for different tasks
(supporting JSON web services, SOAP, XML-RPC,
web, etc. in different ports and then rely on the proxy
server so as to only use the 80 or 443 port). Given
that the number of ports is limited in a server, we have
reduced this number to 3 at the time of this writing.
Ongoing efforts to have a single one per process or
even only one per deployment by relying on WSGI
servers such as gunicorn22.

• Move parameters that were stored in configuration
files to the database. In the past, all the experiment
configuration was stored in a set of JavaScript files
that, if a university is hosting the WebLab-Deusto sys-
tem, could easily change. However, through wCloud,
users can not manipulate files directly, so these set-
tings were moved to the database and added to the
administration panel.

• Migrate the client technology. The WebLab-Deusto
client, at the time of this writing, is developed in
Google Web Toolkit (GWT)23. Using this technol-
ogy, upgrading any change on the client requires a
10 minutes compilation to generate all the required
JavaScript and HTML files in all the languages and
web browsers. While this is not a relevant issue when
deploying it in a local server for a single WebLab-
Deusto deployment, it becomes a problem when
automating the process of deployment of WebLab-
Deusto in virtual machines. A new WebLab-Deusto
client has been developed but it is still under testing
at the time of this writing.

• Store scheduling information in the database.
WebLab-Deusto used to require administrators to edit
a couple of Python files to map which laboratories
were using which external systems. However, in
wCloud, where administrators do not have access
to these files, the number of remote laboratories
is unfortunately fixed. To avoid this problem,
WebLab-Deusto now stores this information in the
database and provides a administration panel where
administrators can, through the web interface, select
which external laboratories can be used.

22http://gunicorn.org/
23http://www.gwtproject.org/

VI. CONCLUSIONS

This contribution describes the wCloud system, which is
a RLMS as a Service software system that enables schools
and universities to create customized remote laboratory man-
agement systems automatically. With them, users can create a
customized WebLab-Deusto system and access laboratories in
the University of Deusto or other universities providing remote
laboratories through WebLab-Deusto. The contribution shows
how this system, developed as part of the mCloud project,
has been used to create WebLab-Deusto instances in multiple
schools and universities.

It also describes what are the technical decisions behind
this software system and the characteristics of the private cloud
environment on which it is going to be deployed.

Regarding future work, while wCloud and WebLab-Deusto
have been adapted to a particular private cloud environment,
it is not yet used in production in this environment since
the private cloud deployment is used for testing purposes. Its
adaptation to other public cloud environments such as Amazon
Web Services will be considered so other users deploying
WebLab-Deusto can efficiently deploy it in such schemes.

ACKNOWLEDGMENT

This work has been supported by research grants IPT-
2011-1558-430000 (mCloud) funded by the Spanish Ministerio
de Ciencia e Innovación.

REFERENCES

[1] O. Dziabenko, J. Garcı́a-Zubia, and I. Angulo, “Time to play with a
microcontroller managed mobile bot,” in Global Engineering Education
Conference (EDUCON), 2012 IEEE. IEEE, 2012, pp. 1–5.

[2] L. Gomes and S. Bogosyan, “Current trends in remote laboratories,”
Industrial Electronics, IEEE Transactions on, vol. 56, no. 12, pp. 4744–
4756, 2009.

[3] C. Gravier, J. Fayolle, B. Bayard, M. Ates, and J. Lardon, “State of
the art about remote laboratories paradigms-foundations of ongoing
mutations,” iJOE, vol. 4, no. 1, 2008.

[4] B. Carisa, A. Burain, S. Molly H, and C. Lawrence, “Running control
engineering experiments over the internet,” 1995.

[5] B. Aktan, C. Bohus, L. Crowl, and M. Shor, “Distance learning applied
to control engineering laboratories,” Education, IEEE Transactions on,
vol. 39, no. 3, pp. 320–326, 1996.

[6] J. Henry, “Running laboratory experiments via the world wide web,” in
ASEE Annual Conference, 1996.

[7] A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and
M. Kraft, “Delivering authentic experiences for engineering stu-
dents and professionals through e-labs,” in Education Engineering
(EDUCON), 2010 IEEE. IEEE, 2010, pp. 1085–1090.

[8] R. Cedazo, F. Sanchez, J. Sebastian, A. Martı́nez, A. Pinazo, B. Barros,
and T. Read, “Ciclope chemical: a remote laboratory to control a
spectrograph,” Advances in Control Education–ACE, vol. 6, 2006.

[9] J. Del Alamo, L. Brooks, C. McLean, J. Hardison, G. Mishuris,
V. Chang, and L. Hui, “The mit microelectronics weblab: A web-
enabled remote laboratory for microelectronic device characterization,”
in World Congress on Networked Learning in a Global Environment,
Berlin (Germany), 2002.

[10] D. Gillet, H. Latchman, C. Salzmann, and O. Crisalle, “Hands-on
laboratory experiments in flexible and distance learning,” Journal of
Engineering Education, vol. 90, no. 2, pp. 187–191, 2001.

[11] I. Gustavsson, J. Zackrisson, L. Håkansson, I. Claesson, and T. Lagö,
“The visir project–an open source software initiative for distributed
online laboratories,” in Proceedings of the REV 2007 Conference, Porto,
Portugal, 2007.

[12] Z. Nedic, J. Machotka, and A. Nafalski, “Remote laboratory netlab for
effective interaction with real equipment over the internet,” in Human
System Interactions, 2008 Conference on. IEEE, 2008, pp. 846–851.

[13] R. Safaric, M. Truntič, D. Hercog, and G. Pačnik, “Control and robotics
remote laboratory for engineering education,” International Journal of
Online Engineering (iJOE), vol. 1, no. 1, 2005.

[14] F. Torres, F. Candelas, S. Puente, J. Pomares, P. Gil, and F. Ortiz, “Ex-
periences with virtual environment and remote laboratory for teaching
and learning robotics at the university of alicante,” International Journal
of Engineering Education, vol. 22, no. 4, pp. 766–776, 2006.

[15] J. Hardison, K. DeLong, P. Bailey, and V. Harward, “Deploying
interactive remote labs using the ilab shared architecture,” in Frontiers
in Education Conference, 2008. FIE 2008. 38th Annual. IEEE, 2008,
pp. S2A–1.

[16] P. Orduña, P. Bailey, K. DeLong, D. López-de Ipiña, and J. Garcı́a-
Zubia, “Towards federated interoperable bridges for sharing educational
remote laboratories,” Computers in Human Behavior, vol. 30, pp.
389–395, Jan. 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0747563213001416

[17] P. Orduña, “Transitive and scalable federation model for remote
laboratories,” Ph.D. dissertation, Universidad de Deusto, Bilbao,
Spain, May 2013. [Online]. Available: http://paginaspersonales.deusto.
es/porduna/phd/

[18] P. Orduna, A. Almeida, D. Lopez-De-Ipia, and J. Garcia-Zubia, “Learn-
ing analytics on federated remote laboratories: tips and techniques,” Apr.
2014, 00000.

[19] P. Orduna, X. Larrakoetxea, D. Bujan Carballal, I. Angulo,
O. Dziabenko, L. Rodriguez-Gil, D. Lopez de Ipina, and J. Garcia-
Zubia, “WebLab-deployer: Exporting remote laboratories as SaaS
through federation protocols,” Sydney, Australia, Feb. 2013, pp.
1–5. [Online]. Available: http://www.weblab.deusto.es/web/images/
publications/rev2013 wcloud.pdf

[20] L. Orue-Echevarria, J. Alonso, M. Escalante, and S. Schuster, “As-
sessing the readiness to move into the cloud,” in Cloud Computing.
Springer, 2013, pp. 12–20.

[21] L. Orue-Echevarria, M. Escalante, and J. Alonso, “An assessment tool
to prepare the leap to the cloud,” in Cloud Computing. Springer, 2013,
pp. 273–292.

