
An HTTP-based Context Negotiation Model for Realizing
the User-Aware Web

Juan Ignacio Vázquez
Faculty of Engineering, Deusto University

Avda. Universidades, 24
48007 Bilbao, Spain

+34 944 139000
ivazquez@eside.deusto.es

Diego López de Ipiña
Faculty of Engineering, Deusto University

Avda. Universidades, 24
48007 Bilbao, Spain

+34 944 139000
dipina@eside.deusto.es

ABSTRACT
In this paper, we present the WebProfiles model, a negotiation
mechanism that allows HTTP-based clients and servers to adapt
services seamlessly by providing contextual information prior to
service execution in order to obtain a more adapted service
experience. The negotiation process, implemented extending
HTTP traditional interactions, provides evidence about how the
WebProfiles model can be used to facilitate user experience when
surfing the web, by automatically negotiating user’s preferences
with the server.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols – applications
C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server
H.3.5 [Information Storage and Retrieval]: Online Information
Services – web-based services

General Terms
Management, Performance, Design, Experimentation
Standardization.

Keywords
Context-aware, HTTP, profiles, Web, cookies, user-aware,
Ambient Intelligence.

1. INTRODUCTION
As the Web is hosting more advanced and value-added services it
is also requiring sophisticated mechanisms to provide the desired
behaviour [1][2]. Moreover, the Web is not more restricted to
communicating computers over traditional networks, but new
devices and underlying infrastructure are supporting HTTP-based
interaction.
Context aware mechanisms are one of those required extensions
for the Web to fulfil present and future services demands. Context
awareness allows a service to perceive task-related information
that can be used to provide a more suitable and effective outcome
for the user. Context information can be provided by the client
itself explicitly, or can be extracted by the service from other

available sources in a scenario dependent paradigm.
HTTP context awareness is a broad concept than can embrace the
traditional HTTP state management mechanism [3], which has
been very criticized over the years, despite the Web would not be
as powerful as it is without those small chunks of information
called cookies [4]. These pieces of data allow a web service to
recognize immediately a visiting user and parameterize the nature
of the information being presented based on past visits and
interaction, and it can be considered a very simple form of context
awareness mechanism.
In order to materialize new capabilities we have created the
WebProfiles model: an HTTP extension that supports context
information management as well as a negotiation process that
allows clients and service providers to establish the appropriate
informational environment for the service execution.
Some other initiatives such as the Open Profiling System (OPS)
[6] have approached a similar viewpoint but they have never been
successful. The Platform for Privacy Preferences (P3P) initiative
[7] also included in the initial specifications the idea of some form
of information exchange to support web service adaptation, but it
was finally considered out of the scope of the standardisation, as
well as some criticisms arose about privacy concerns [8].
Special attention must be paid to WS-Context [9], an ongoing
work to define a mechanism for context information sharing
among multiple coordinated services for executing a task. This
specification is tightly linked to the Web Services technologies
such as SOAP [10], WSDL [11] and more concretely to WS-CAF
(Composite Application Framework), WS-Coordination and WS-
Transactions.
The WebProfiles model introduced in this work shares many
similarities with these other technologies and inherits some of
their characteristics, but we stress the use of user-related context
in the form of preferences. While CC/PP [18] seems to be a good
initial alternative, it is too oriented to express device information
and concrete data instead of conditional preferences as explained
below.
In section 2, we introduce the concept of context awareness and
its implications for web-based services. In section 3, we present
WPML (WebProfiles Markup Language) to represent user
preferences. In section 4 we introduce the basics of the
WebProfiles model by means of the involved definitions and the
generic negotiation process. In section 5, the model is fully
explored through HTTP extensions analysis, basically new
headers and intensive usage of HTTP multipart messages. This
section covers all the practical aspects of WebProfiles
implementation showing how it is a real model that works, one of
our goals in this paper. Finally in section 6, we present some open

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

issues about the evolution of the WebProfiles model and security
implications.

2. USER CONTEXT AWARENESS
It is not easy to find a widely accepted definition for “context”,
since it is very dependable of the framework in which is applied.
One of the most precise and open statements we can mention is
found in the WS-Context specification [9] and declares that a
“context contains information about the execution environment of
an activity”.
That is, a context is an information entity that can be used to
provide additional data for some process execution. Probably, that
execution could be performed without that supplementary
information, but surely its influence can be used to establish a
user-adapted execution framework more precisely.
Probably, and important part of the context information for a
service is related to the user, expressing data about him, his
preferences maybe depending on other context information, and
so on. We can define user context information as the subset of the
context information influencing a service that model user-related
aspects.
When coping with web services and web processes, it is often
necessary to exchange a large amount of data to execute a service.
The service provider needs to be supplied with all the data the
user keeps that are relevant to the situation. For example, if a user
wants to check new jazz titles at some different music web sites,
he must repeat similar navigation interactions once and again at
every site. Or, if the user is a fan of a famous movie director, the
visited web sites, agnostic of this, do not highlight related
information, unless explicitly stated by the user.
Web sites, web services and web providers are not aware of user’s
context, provoking unnecessary navigations refinements over the
time that end up in entering the same data along different
processes repeatedly.
HTTP state management mechanism has provided a simple
method for a web site to recognize the user in subsequent visits
via cookies. Nevertheless, cookies are used primary for client
identification, not for context information representation due to
format limitations and security considerations.
Our goal was to find a mechanism as simple as cookies but able to
cope with user context information sharing between clients and
servers, where user preferences could be formally defined and
structured so that they could be passed forward to validated
services in order to obtain a more personalized service execution.
That is, prior to actual service interaction between the user and the
service provider, the user-agent and the server negotiate and set
up an information-rich context in such a way that it seems that the
service provider knows the user beforehand, despite the latter has
never visited the site before. Further interactions can be
accomplished inside that mutual knowledge framework.
Figure 1 illustrates the interaction process between a client (user-
agent) and a service provider in the usual way, without previous
context negotiation.

Client Service
Provider

Service A Request

Data required

Context information

ci1 ci2

ci3 ci4
Service A Request

+ Data [ci1]

Service B Request

Service B Request
+ Data [ci2, ci3]

Service A Response

Data required

Service B Response

ci1

ci2 ci3

Service C Request

Service C Request
+ Data [ci4]

Data required

Service C Response ci4

Figure 1: Service interaction without previous context

negotiation
Data are supplied by the client as needed, increasing the number
of interactions. This diagram is familiar in the Web paradigm,
since several extensions implement similar mechanisms, such as
HTTP Authentication, where the client supplies authentication
data under demand in a client-driven negotiation. Figure 2
illustrates the same services requests with a previous context
negotiation process.

Client Service
Provider

Service A Request

Context required

Context information

ci1 ci2

ci3 ci4
Service A Request

+ Data [ci1, ci2, ci3, ci4]

Service B Request

Service A Response

Service B Response

Service C Request

Service C Response

ci1 ci2

ci3 ci4

Figure 2: Service interaction with previous context negotiation

As we can see, context is established in the initial phases of the
communication process. The service provider obtains immediately
a perfect knowledge about required user information, which can
be applied to carry out a personalized service execution.
Moreover, the number of interactions decreases dramatically,
resulting in saved time and communication efforts.
Of course, these advantages depend significantly in how
accurately the user context and preferences information can be
identified beforehand. Imprecise negotiation can result in a large
amount of unusable exchanged data along with a lack of relevant
information that forces extra interactions. How the WebProfiles
model identifies, represents and negotiates the user context set up
is analyzed in the next section.

3. THE WEBPROFILES MARKUP
LANGUAGE (WPML)
A service or a system can be probably represented at any time via
state information, which evolves along the state space that
represents all the possible situations under which the service can
be found.
After all, expressing and transmitting user preferences is a way of
influencing the state of the service or system when interacting
with the user [5] to meet his desires or requirements.
But the reality is a bit more complex. Probably the user wants his
preferences to be applied in a context-sensitive way, that is,
depending on the service actual state or information, the
preferences can vary.
Here, we redefine the concept and define context as the set of
conditions that must be tested and probably fulfilled by the
service to activate the user preferences. Thus, the context
represents the surrounding information that must be checked to
determine the need for setting up some concrete preferences.
On the other hand, we define configuration as the set of related
preferences that express user requirements or predilections for
some features of the service operation.

Finally, we define profile as the association of a context to a
configuration, that is, the set of conditions under which some
preferences must be activated. In fact, an accepted configuration
provokes a change in the service state related to the user, creating
a new context closer to the user’s desires, so the whole process
can be called context negotiation and it is described at a higher
level in section 4.
Via context negotiation the user (or user-agent) expresses and
transmits profiles that must be processed by the target service,
influencing its behaviour and state, thus achieving user-aware web
services.
For example, a user preference can represent “I want my alias to
be ‘Mike’ and talk in rooms with less than 20 people when surfing
sites about music”. In this case “my alias to be ‘Mike’ and talk in
rooms with less than 20 people” are preferences to be activated in
a context “when surfing sites about music”.
Both contexts and configurations are expressed with two
complementary mechanisms. First, data structures of XML Data
Schemas are used to identify the concepts about which conditions
and preferences are going to be expressed. Second, we have
developed an XML-based language called WPML (WebProfiles
Markup Language) to relate configurations to contexts in which
those preferences must be activated, that is, to represent profiles.
In order to express both the context information and the
preferences we need to use XML Data Schemas that structure the
involved domain of knowledge, maybe the “site information”
domain, and the “chat” domain in the above example. Depending
on some characteristics in the site information domain we want
some preferences in the chat domain. Since every domain is
identified via a unique namespace, no ambiguities must arise
when generating our profile.
The above example can be represented in WPML in the following
way:

<?xml version="1.0" encoding="UTF-8"?>
<wpml xmlns="http://www.webprofiles.org/schemas/wpml10"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.webprofiles.org/schemas/wpml10
http://www.webprofiles.org/schemas/wpml10.xsd"
querylang="xpath">
<profile>

<context xmlns:site="http://www.webprofiles.org/dataschemas/siteinfo">
<pattern ID="pat1" use="optional"

match="/site:site/site:categories[site:category='music']"/>
</context>
<configuration xmlns:chat="http://www.webprofiles.org/dataschemas/internetservices/chat">

<preference ID="pre1" use="optional" about="/chat:chat/chat:userinfo/chat:alias"
operator="eq" value="Mike"/>

<preference ID="pre2" use="optional" about="/chat:chat/chat:rooms/chat:room/chat:nusers"
operator="lt" value="20"/>

</configuration>
</profile>

</wpml>
The <profile> element contains two elements: <context> and
<configuration>. The <context> expresses a set of patterns
(the technical word we use for conditions) in domains to activate
preferences. Those patterns are expressed using XPath and are
considered to be fulfilled if the XPath expression yields an object

when evaluated. The <configuration> element contains the
user preferences, addressing them also via XPath but expressing
ranges via the operator and value attributes.
This is a remarkable difference with other systems like CC/PP
[18], which merely conveys user-agent information using the

classical attribute-value method. In the WebProfiles model, we
can express ranges of values that are preferred by the user for a
concrete attribute, thus allowing more expressive power about real
preferences. We can even represent our desire for a concrete
attribute not to be of a certain value or range, using the MathML-
based operators eq, neq, gt, lt, geq and leq.
When the XPath expression in a preference yields more that one
object, a node-set, only the first one is selected.
Of course, we could express our chatting preferences without any
condition related to the site type, being it “music” or “politics”. In
those cases where preferences are not attached to existing context
conditions, the context section can be omitted, so that only the
configuration information is conveyed. We call this type of
profiles, context-less profiles.
The “optional” value at the use attribute in the pattern element
indicates that the condition must be fulfilled only if present, but it
can be ignored if the service provider is not able to test it. A
“required” value there indicates that the condition must exist
and be fulfilled.
Several patterns must be provided in the same or different
domains. For example,
<context

xmlns:site="http://www.webprofiles.org/datasche
mas/siteinfo"
xmlns:chat=”http://www.webprofiles.org/datasche
mas/internetservices/chat”>
<pattern ID="pat1" use="optional"

match="/site:site/site:categories[site:cat
egory='music']"/>
<pattern ID="pat2" use="required"

match="/chat:chat/chat:rooms/chat:room
[contains(chat:topic,'beatles')]"/>

</context>
With these context patterns, the associated configuration must
only be applied if the site type is “music” and there is at least one
chat room with the string ‘beatles’ in the topic, being this last
pattern mandatory to exist and fulfil.
Again, we want to stress that there is a subtle but important
difference among the context-related information structures and
the “configuration of preferences”-related structures. Context
information represents state information that the service provider
is able to check, either directly from databases or files, or
indirectly by requesting the state from some originating sources.
In both cases, that state information must be structured in XML
format meeting the requirement of an associated grammar,
possibly in the form of a XML Schema. That XML formatted
state information is the target of the XPath expressions in the
context section of the profile. So, we call context domains to the
set of domains of knowledge the service is aware of.
On the other hand, preferences configuration information
represents domains over which the service keeps control to make
changes to fulfil user preferences and drive the system towards the
desired state. The service can implement those changes invoking
some low level functions, updating databases or files, or invoking
operations on remote objects via SOAP, for instance. The selected
mechanism are up to the service and out of the scope of the
WebProfiles model. So, we call configuration domains to the set
of domains of knowledge over which the service keeps control
WPML has some additional but powerful features such as
variables and complex data structures that can be declared and
used as comparison values both in patterns and preferences.

XPath is the preferred element addressing language as well, but
WPML is open for other mechanisms such as XQuery, just
establishing the querylang attribute at the <wpml> element (in
our current implementation only XPath is supported).
At this point, WPML is enough powerful to express user’s
profiles relating context and configuration information about
different domains the service is supposed to be aware and control
(some of them). Next, we will illustrate how the user-agent can
determine the supported context and configuration domains for
the service, so that it can generate and send the right profiles in
WPML.

4. THE WEBPROFILES MODEL
The goal of the WebProfiles model is to provide an HTTP-based
mechanism to negotiate and convey user preferences information
to obtain more adapted web services results. The user-agent,
acting as the client, is the unique entity that manages the user
preferences repository, providing the authorized services with the
appropriate subset to generate adaptation.
The client repository stores user-related profiles on different
knowledge domains, being several profiles about the same
domains supported and applicable to different service scenarios.
The point with the WebProfiles model is that information is not
statically determined, but it is dynamically generated depending
on the situation by selecting and grouping the convenient profiles
and forwarding them to the service provider.
That is why we can state that the WebProfiles model adds user-
related context-awareness to the web and web services.
The elements that define the situation and, thus, influence the
selection of profiles are: the involved domains of knowledge, the
service provider related information, the user’s established
permissions about profile information access, and the existence of
suitable profiles to convey.
All these entities’ data serve as criteria to negotiate and exchange
the user-related context information with the service provider, and
so, set up the environment for further services execution.
4.1 Negotiation
The WebProfiles model defines an HTTP-based negotiation
mechanism that allows both client and service providers to set up
the user-related context in which further interactions can be
performed.
The most remarkable phases within this negotiation process
involve notification of domains of knowledge about profiles,
profile transmission and service adaptation.
The following diagram illustrates the negotiation process at a
higher level, stressing the sequence of tasks each party must
accomplish.

1. Request

7. Response (adapted)

2. Response (generic)
[+Domains]

[+ Service Credentials]

5. Request
+WebProfiles

3. WebProfiles
Selection

4. Authorization

Client Service
Provider

6.Content
Adaptation

User-Context established

Normal finalization

Figure 3: The WebProfiles negotiation process

The detailed description of each step is:
1. The user-agent issues a normal request to get some resource

from the service provider.
2. The service provider processes the request and sends back the

resource (in a generic form) along with the list of context and
configuration domains through which the user agent can
express profile information. Optionally, the service provider
can attach some kind of Service Credentials certifying the
privacy for user profile if sent. This Service Credentials can
take the form of P3P policy [7]. If the client does not support
WebProfiles or the domains to express preferences, or it does
not validate credentials, or it does not require adaptation for
this service, the negotiation process ends at this point as if it
was a normal finalization without WebProfiles.

3. If the client demands service adaptation, it checks the context
and configuration domains to select all the stored
WebProfiles that express user preferences.

4. The client filters the list of candidate WebProfiles using the
Service Credentials supplied by the service provider, and
thus obtaining the final list of validated WebProfiles suitable
for that concrete service adaptation.

5. The client issues the original request adding the validated
WebProfiles.

6. The service provider uses the information conveyed in the
received WebProfiles to better know the client and adapt the
further responses and the overall service.

7. The service provider generates the corresponding response to
the request, conveniently adapted by means of the
WebProfiles. Now, the user-contextual information is
established between the user-agent and the service provider
for further exchanges.

After negotiation, the service provider knows the user and gets
aware of his preferences as if it was a returning visitor, despite
maybe it is the first time the user accesses the site.
This interaction model illustrates the process of contextualization
via WebProfiles. In the case user-context information is not
needed or WebProfiles are not supported neither by the client or

the service provider, the interaction finishes at step 2 and the
overload is minimal in relation to the normal process.
Only if WebProfiles are applicable and agreed by both parties, a
further interaction is required where WebProfiles are exchanged
in an overall process that resembles HTTP Basic Authentication
[12], in the sense that the client is the responsible for resending
the original request extended with additional information to
obtain a preferred response (client-driven negotiation).
In fact, this resemblance is not casual. The WebProfiles model has
been designed in such a way that shares many similarities with
existing HTTP mechanisms in order to be easily integrated within
the hypertext protocol.
Nevertheless, the WebProfiles negotiation model does not follow
an strict client-driven or server-driven negotiation model as
specified in [13], but it shares hybrid characteristics with both of
them as it is explained in the following sections.

5. WEBPROFILES HTTP EXTENSIONS
Since WebProfiles are intended to be applied in web-enabled
scenarios, the use of HTTP as the supporting protocol for
negotiation is more than evident. Despite the primary goal is
reusing the most functionality present today, some tasks in the
WebProfiles negotiation process require extra protocol
information to be exchanged between clients and service
providers.
The WebProfiles model has been designed with a clear orientation
to the web paradigm, which is reflected not only in the name
itself, but also in the synergies with other HTTP technologies.
WebProfiles can and should be used in conjunction with HTTP
mechanisms such as HTTP Multipart Messages [14], cookies [3]
and HTTPS [15] secure communication to enhance the context
establishment process under certain scenarios.
5.1 Identification mechanism
The WebProfiles model requires the definition of an identification
mechanism that allows clients and servers to identify profile
instances unambiguously.
Even if the profile document is syntactically the same, the
identification tag must be different if it was generated by distinct
parties or in different periods of time. There must be a unique
“WebProfile ID” for every profile expressing user requirements
for adaptation; so that client and servers can check the
WebProfiles they share, avoiding the need to exchange profiles
once and again, by checking only IDs.
Analysing the identification mechanisms traditionally used in
HTTP, none of them was found appropriate. The ETag format
[13] is not suitable by definition and cannot be used for universal
identification purposes due to its nature (collisions can easily
appear). An MD5 digest [16] represents a digest only dependant
on the content, which means that two user-agents that create the
same WebProfile information would associate it to the same MD5
identifier. That is not a problem now, since the service provider
can associate a cookie to the WebProfile and distinguish among
clients with identical WebProfile IDs.
However, we have in mind some future extensions of the
WebProfiles model, out of the scope of this paper, that allow the
service providers to update profiles at the user-agent side (of
course, in those domains in which the client allows the servers to
do so). Two servers could generate the same MD5 digest over the

same content, causing conflicts in the client for distinguishing one
profile from the other without extra metadata information.
Finally, the URN UUID format [17] was found successful for this
task. It assigns a universal unique identifier while being an URI
after all, so it fits perfectly in the web model.
An example of such identifier is:
urn:uuid:fede9406-5151-4a10-8d26-7d6908ae7559

5.2 WebProfiles HTTP Headers
In this section we are going to start introducing the extensions
required in HTTP to support the WebProfiles negotiation process,
which take the form of new HTTP headers for different purposes.
To illustrate the use of WebProfiles HTTP headers we will step
through an example client-server interaction with successful
profile exchange, omitting obvious traditional HTTP headers
(Content-Length, Connection, Host, …) for stressing the
importance of new ones. Also, we do not use in the example the
HTTP Extension mechanism [24] for the sake of clarity, but any
implementation should apply it.
Finally, in this example we suppose that the user-agent has some
preferences configured about using “chat” sites (the type of site
involved in the example), it is the first time contacting this
particular server, and has just downloaded the P3P privacy policy
from it, verifying there are no conflicts with user policy about
sending WebProfiles.

Graphically, the interactions can be represented following the
scheme depicted in Figure 4.

3. WebProfiles
Selection

4. Service Credentials
Filtering

Client Service
Provider

6. Content
Adaptation

User-Context established

Normal finalization

1. HTTP Request
+WP-Version

7. HTTP Response
+WP-Version

+WP-Collection
+ Adapted Content

2. HTTP Response
+ WP-Version
+ WP-Accept

+ Generic Content

5. HTTP Multipart Request
+ WP-Version
+ WP-Activate
+ WebProfiles

Figure 4: The WebProfiles HTTP-based negotiation process

GET /service HTTP/1.0GET /service HTTP/1.0GET /service HTTP/1.0GET /service HTTP/1.0
WPWPWPWP----Version: 1.0Version: 1.0Version: 1.0Version: 1.0

HTTP/1.0 200 OK
WP-Version: 1.0
WP-Accept: text/vnd.webprofiles.wpml+xml;

ctx-1="http://www.webprofiles.org/dataschemas/siteinfo";
ctx-2="http://www.webprofiles.org/dataschemas/internetservices/chat";
cnf-1="http://www.webprofiles.org/dataschemas/internetservices/chat"

<!-- Generic content: Welcome unknown -->

POST /service HTTP/1.0POST /service HTTP/1.0POST /service HTTP/1.0POST /service HTTP/1.0
WPWPWPWP----Version: 1.0Version: 1.0Version: 1.0Version: 1.0
WPWPWPWP----Activate: urn:uuid:f81d4faeActivate: urn:uuid:f81d4faeActivate: urn:uuid:f81d4faeActivate: urn:uuid:f81d4fae----7dec7dec7dec7dec----11d011d011d011d0----a765a765a765a765----00a0c91e6bf600a0c91e6bf600a0c91e6bf600a0c91e6bf6

--------multipart_separatormultipart_separatormultipart_separatormultipart_separator
ContentContentContentContent----Type: text/vnd.webprofiles.wpml+xmlType: text/vnd.webprofiles.wpml+xmlType: text/vnd.webprofiles.wpml+xmlType: text/vnd.webprofiles.wpml+xml
WPWPWPWP----ContentContentContentContent----URI: URI: URI: URI: urn:uuid:f81d4faeurn:uuid:f81d4faeurn:uuid:f81d4faeurn:uuid:f81d4fae----7dec7dec7dec7dec----11d011d011d011d0----a765a765a765a765----00a0c91e6bf600a0c91e6bf600a0c91e6bf600a0c91e6bf6

<!<!<!<!-------- Content of Content of Content of Content of the WebProfile with the WebProfile with the WebProfile with the WebProfile with urn:uuid:f81d4faeurn:uuid:f81d4faeurn:uuid:f81d4faeurn:uuid:f81d4fae----7dec7dec7dec7dec----11d011d011d011d0----a765a765a765a765----00a0c91e6bf6 00a0c91e6bf6 00a0c91e6bf6 00a0c91e6bf6 -------->>>>
--------multipart_separatormultipart_separatormultipart_separatormultipart_separator--------

HTTP/1.0 200 OK
WP-Version: 1.0
WP-Collection: urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6; max-age=300

<!-- Adapted content: Welcome Mike, only chat rooms < 20 people shown -->

5.2.1 WP-Version
The WP-Version header merely notifies the other party about the
version of the WebProfiles specification one uses. The user-agent
sends this header to inform the server about WebProfiles support.

5.2.2 WP-Accept
In the step 2 of the Figure 4, the service provider agrees the
WebProfile version and indicates in the WP-Accept header the list
of context and configuration domains accepted for service

adaptation. First, the MIME type of the accepted format for
profiles is included (text/vnd.webprofiles.wpml+xml),
along with context and configuration domains in the standardized
form of namespaces, via numbered parameters.
In the above example, the service provider informs the user-agent
about two context domains (against which evaluate adaptation
conditions) and one configuration domain (against which execute
adaptation).
The HTTP response message includes the entity content referred
by the request URI without adaptation, in the generic form, which
is valid for the user-agent if the interaction ends at this point.
If the user-agent has some valid WebProfiles associating the
context and configuration domains accepted by the server, those
candidate WebProfiles are selected and checked against the P3P
policy file that declares the intended use of the data by the service
provider. After filtering, the user-agent gets the final list of
validated profiles to send to the server.

5.2.3 WP-Activate
Now, the client can resend the original request including the
validated WebProfiles. Since every validated WebProfile
document must be included in the request message, the format of
such is an HTTP POST multipart message where each part
contains a particular WebProfile document along with description
headers such as Content-Type, Content-Length, and the WP-
Content-URI header (explained below).
Previous to each multipart section, a new response header WP-
Activate is included to specify the URN UUIDs of the validated
WebProfiles that must be used to perform service adaptation. For
example, if two WebProfiles were selected, the header could be:
WP-Activate: urn:uuid:23adf57b-cfa2-11d0-aad3-

00a0c91e6bf6, urn:uuid:faef81d4-0c9-11d0-a765-
00a0c91ef5da

Every multipart section in the request message with a WebProfile
content must include at least the Content-Type header (with the
supported value of text/vnd.webprofiles.wpml+xml) and a
WP-Content-URI header that identifies unambiguously the
associated WebProfile.
Note that the original HTTP GET request has been transformed to
a HTTP POST request: URIs supporting WebProfiles adaptation
should be accessible via POST requests to receive WebProfiles
along with the request. An alternative solution could be to include
the complete WebProfiles in the headers as other technologies do
such as [19].
However, we think that multipart POST messages are more
suitable, clear and graceful for these tasks, and supporting POST
requests are a usual feature for any URI, as well as a mechanism
widely used by other protocols such as SOAP to convey data [10].

5.2.4 WP-Content-URI
The WP-Content-URI header is an entity header that associates a
universally unique identifier to the accompanied entity. Its
purpose is to identify unambiguously an information entity, so
that can be referenced from other headers (mostly from WP-
Activate and WP-Collection), but also declares the identification
tag for the content entity that will be used by clients and servers.
Other header candidates for entity identification such as the ETag
[13], Content-Location [13], Content-MD5 [20] or even the
Content-Disposition [20] header were discarded because of

inconvenience for universal identifying purposes as stated
previously.

5.2.5 WP-Collection
In the step 7 of the Figure 4, the service provider issues a WP-
Collection header conveying the URN UUIDs of the WebProfiles
sent by the client in the request and found successful for service
adaptation. The purpose of the WP-Collection header is to inform
the client about the WebProfiles associated in the service
provider, and used to establish the user-context and generate the
adapted content. An example of two WebProfiles accepted would
be:
WP-Collection: urn:uuid:23adf57b-cfa2-11d0-aad3-

00a0c91e6bf6; max-age=300, urn:uuid:faef81d4-
0c9-11d0-a765-00a0c91ef5da; max-age=600

The max-age parameter informs the user-agent about the period
of time (number of seconds) that profile is going to be active at
the server. The client should actively renew its influence over the
service provider, by sending a request containing the WP-Activate
header listing the WebProfiles to renew before expiration.
This mechanism puts the charge of coping with rapidly changing
contexts in the user-agent side, which is the unique party that
initiates interaction in the HTTP model. This makes the user-agent
explicitly aware of the period of influence of the adaptation,
especially important in shared resources (referred by URIs) where
users have to hand over the rights to each other.
Finally, the service provider also includes the adapted content in
the response, which maybe is the only thing noticed by the user.
At this point, the user-context is established, the service provider
knows the user preferences and under which conditions must be
activated without user explicit input. Those profiles can be sent
once and again to different sites without user intervention to
automatically adapt every site to his preferences.

5.2.6 WP-Error
Despite not included in the example, some error situations can
arise when negotiating WebProfiles. For instance, a service
provider could not check context patterns data structures due to a
temporary out of service state, or maybe there could be a syntax
error in some XPath expression.
The WP-Error header can be included in the server response with
information about errors processing the profiles. The format of the
WP-Error header is based on the Profile-Warning header of
CC/PP with some differences. An example of WP-Error:
WP-Error: 402 urn:uuid:f81d4fae-7dec-11d0-a765-

00a0c91e6bf6#pre1 "Not allowed domain"
The WP-Error header informs about the error code, the
WebProfile that contains the error, the concrete entity in the
profile via the XML element ID attribute, and a descriptive
message. Of course, an erroneous profile is never included in the
WP-Collection header of accepted profiles, and must appear in the
WP-Error message.

6. CONCLUSION AND FUTURE WORK
The WebProfiles model adds a convenient extension to the HTTP
protocol in order to support automatic customization and
adaptation of services. It can be applied in multiple environments,
even Ambient Intelligence scenarios with embedded server-based
devices.

Our current implementation takes the form of a Mozilla/Firefox
extension that intercepts browser generated requests and
populates them with the new headers. Responses are also caught
and parsed, generating further actions to implement WebProfiles
negotiation.
The WebProfiles can be created by the user via UI wizards or
even downloaded from servers that generate them with user
detected preferences.
The use of well-known standards such as HTTP, XML or XML
Schemas guarantees the stability and coherence of the model
itself, while retaining the extensibility that can be added by using
accompanying web technologies such as HTTPS. The
WebProfiles model relies also on P3P technology for validating
the use of the preferences by the service provider against user
privacy policy.
A more optimized method for WebProfiles updates at the server,
via the WP-Collection and WP-Accept headers in message
interactions could be implemented, maybe exchanging only
affected WebProfiles sections and not the entire document, so we
are considering the use of delta encoding for HTTP [25].
Finally, we think that RDF [22], OWL [23] and other Semantic
Web technologies could also be applied to declare the data
structures of the context and configuration domains, instead of
XML Schemas. XPath in WPML could also be substituted by
other semantic alternatives, still under development and sparsely
standardized, such as CXPath [26], RxPath [27], RDF Path [28]
or RPath [21]. However, in our current research, we are finding
out that maybe no xPath technology would be needed since
navigating through semantic relationships could provide the path
to the concepts. Anyway, we foresee that the use of Semantic
WebProfiles would allow the expression of context patterns and
preferences by means of their real relationships, and it is one of
our next goals.

7. ACKNOWLEDGMENTS
This work has been partly supported by the Cathedra of
Telefónica Móviles España at Deusto University, Bilbao, Spain.

8. REFERENCES
[1] Web Services Architecture Working Group. Web Services

Architecture. W3C Note. 2004. http://www.w3.org/TR/ws-
arch/

[2] Web Services Choreography Working Group. Web Services
Choreography Requirements.W3C Working Draft. 2004.
http://www.w3.org/TR/ws-chor-reqs/

[3] Kristol, D., and Montulli, L. RFC 2965: HTTP State
Management Mechanism. IETF RFC. 2000.

[4] St. Laurent, S. Cookies. Computing Mcgraw-Hill. 1998.
[5] Vázquez, J.I., and López de Ipiña, D. An Interaction Model

for Passively Influencing the Environment. Adjunct
Proceedings of the 2nd European Symposium on Ambient
Intelligence (Eindhoven, The Netherlands). 2004.

[6] Hensley, P. et al. Implementation of OPS Over HTTP. 1997.
http://www.w3.org/TR/NOTE-OPS-OverHTTP.html

[7] P3P Specification Working Group. The Platform for Privacy
Preferences 1.1 (P3P1.1) Specification. W3C Working Draft.
2004. http://www.w3.org/TR/P3P11/

[8] Coyle, K. P3P: Pretty Poor Privacy? A Social Analysis of the
Platform for Privacy Preferences (P3P). 1999.
http://www.kcoyle.net/p3p.html

[9] Little, M., Newcomer, E. and Pavlik, G. (eds.). Web Services
Context Specification (WS-Context). OASIS Committee
Draft v.0.8. 2004.

[10] XML Protocol Working Group. SOAP Version 1.2 Part 0:
Primer. W3C Recommendation. 2003.

[11] Web Services Description Working Group. Web Services
Description Language (WSDL) Version 2.0 Part 1: Core
Language. W3C Working Draft. 2004.

[12] Franks, J. et al. RFC 2617: HTTP Authentication: Basic and
Digest Access Authentication. IETF RFC. 1999.

[13] Fielding, R. et al. RFC 2616: Hypertext Transfer Protocol --
HTTP/1.1. IETF RFC. 1999.

[14] Freed, N. and Borenstein, N. RFC 2046: Multipurpose
Internet Mail Extensions (MIME) Part Two: Media Types.
IETF RFC. 1996

[15] Rescorla, E. RFC 2818: HTTP Over TLS. IETF RFC. 2000.
[16] Rivest, R. RFC 1321: The MD5 Message-Digest Algorithm.

IETF RFC. 1992.
[17] Leach, P., Mealling, M. and Salz, R. A UUID URN

Namespace. Internet Draft. 2004. draft-mealling-uuid-urn-
03.txt.

[18] W3C Device Independence Working Group. Composite
Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0. W3C Recommendation.

[19] P3P Specification Working Group. Platform for Privacy
Preferences (P3P) Syntax Specification. W3C Working Draft
26 August 1999.

[20] Troost, R., Dorner, S. and Moore, K. RFC 2183:
Communicating Presentation Information in Internet
Messages: The Content-Disposition Header Field. IETF
RFC. 1997.

[21] Matsuyama, K. et al. A Path-Based RDF Query Language for
CC/PP and UAProf. Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops,
2004.

[22] RDF Core Working Group. RDF Primer. W3C
Recommendation. 2004. http://www.w3.org/TR/rdf-primer/

[23] Web Ontology Working Group. OWL Web Ontology
Language Overview. W3C Recommendation. 2004.
http://www.w3.org/TR/owl-features/

[24] Nielsen, H. et al. RFC 2774: An HTTP Extension
Framework. IETF RFC. 2000.

[25] Mogul, J. et al. RFC 3229: Delta encoding in HTTP. IETF
RFC.2002.

[26] Camillo, S.D., et al. Querying Heterogeneous XML Sources
through a Conceptual Schema- Conceptual Modeling - ER
2003, 22nd International Conference on Conceptual
Modeling. LNCS 2813. Springer. 2003.

[27] http://rx4rdf.liminalzone.org/RxPath
[28] http://infomesh.net/2003/rdfpath/

