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Abstract—The work presented here aims to answer
this question: Using just binary occupancy sensors
is it possible to build a behaviour occupancy model
over long-term logged data? Sensor measurements are
grouped to form artificial words (activities) and docu-
ments (set of activities). The goal is to infer the latent
topics which are assumed to be the common routines
from the observed data. An unsupervised probabilistic
model, namely the Latent Dirichlet Allocation (LDA),
is applied to automatically discover the latent topics
(routines) in the data. Experimental results using real
logged data of 24 weeks from an office building, with
different number of topics, are shown. The results show
the power of the LDA model in extracting relevant
patterns from sensor network data.

I. Introduction

Mining the huge amount of data obtained from a sensor
network in a modern office building presents a significant
challenge for pattern recognition and behaviour analysis.
The results of this analysis could provide several benefits
in different ambient intelligence areas and domains. In
this paper, we focus on the long-term analysis of people
behaviour’s in an office environment, meaning by long-
term a time-line bigger than six months. This temporal
constraint relies on the assumption that several interesting
patterns could only be detected when behaviour data is
analyzed over a long time. Thus, for finding patterns it
is necessary to employ techniques and algorithms which
are able to cope with the huge amount of data provided
by the sensors, in a scalable manner, and following an
unsupervised way.

The work presented here employs the Latent Dirichlet
Allocation (LDA) [1] model in order to find interesting pa-
tterns from the data obtained from the environment. LDA
is a generative and unsupervised model for collections of
discrete data and it is also known as a probabilistic topic
model. LDA is different from other clustering techniques in
that it assigns multiple topics to each document. Viewing
the activity history inside the building as documents with
each word corresponding to some part of the activity
makes it possible to formulate the problem of discovering
the set of topics that are used in a collection of documents
(corpus). The idea behind this comparison is that the set
of topics would correspond to the set of most common

patterns in the environment being monitored (documents)
which are drawn from the observed activities (words).

One of the objectives and aims of ambient intelligence
applications is to understand what is going on in an
environment, which could be derived from sensory observa-
tions, and respond appropriately to the identified solution.
In LDA the semantic properties of activities (words) and
activity history (documents) are expressed in terms of
probabilistic routines (known as topics) which are learned
following an unsupervised scheme. Therefore, semantic
relationships between words-topics and topics-documents
are interpreted in terms of probability distributions.

The kind of sensors employed in ambient intelligence
applications usually provides a huge amount of data
making necessary to employ some filtering or dimen-
sionality reduction techniques. LDA could also be seen as
a dimensionality reduction technique since it transforms a
document into a set of topics and each topic is drawn from
a multinomial distribution of words. Thus it is possible to
describe each document from the most likely topics and
each topic with the K most probable words. Also, the
complexity of the LDA model, once it has been trained,
is linear with the number of topics learned and the size of
the corpus (collections of documents), making it suitable
to process a large amount of data.

The application of the LDA model in this scenario allows
to infer in a generative way a set of routines (topics)
on which depends a set of daily patterns of activities
(documents). We also argue, that it could be possible to
extend or reduce the word length and the document size
in order to infer activities over different time intervals.

The work presented here aims to answer this question:
Using just binary occupancy sensors is it possible to build
a behaviour occupancy model over long-term logged data?

This paper continues as follows. In the next section,
some related works are described and the differences with
this work are highlighted. Section III describes the process
of building the model from the obtained raw measure-
ments. The results and the experiments carried out are
shown in section IV. Finally, section V provides future
research directions and concludes the paper.



II. Related works
Since Blei’s LDA original paper [1], the model has been

applied to different domains but mostly in the document
processing domain using text collections. In [2] the au-
thors use the LDA algorithm to analyze abstracts from
PNAS and automatically extract the topics. In contrast to
the original LDA model which uses variational inference
they employed a Markov Chain Monte Carlo (MCMC)
inference model. A good comparison between the different
inference algorithms that could be employed in the LDA
model is provided in [3].

In the computer vision domain, the LDA model has
been applied to automatically infer the images’ categories
and understand the content of the images such as in [4]
[5]. It has been also employed for learning human action
categories in videos [6].

Recently, Farrahi and Gatica-Perez [7] [8] use LDA and
Author-Topic Model [9] to discover daily location-driven
routines from a massive dataset of mobile phones user’s
location. In the work presented here, a similar approach
is employed to build the bag-of-words of the documents.
However, their experiments focus on data which have
different locations from each user, instead of this work
which models the occupancy at one location.

Related to the office building domain, the work of [10]
provides statistical sampling of occupancy features from a
very large dataset (MERL dataset [11]) with no ground-
truth or outside knowledge. The MERL dataset [11] is
composed of people movements at the MERL building for
a period of a year (from March 21 2006 to July 2 2008)
and recorded over a sensor network of 200 wireless motion
sensors. The full dataset contains over 30 million raw
motion sensor data logs from two floors. Their approach
is based on information theoretic measures and graph-cuts
and their goal was to identify potentially important events
within the organization.

A review of temporal pattern mining algorithms used
to discover patterns in sensor networks is provided in
[12]. They proposed a modified T-Pattern algorithm [13]
and tested it using the MERL dataset. On the smart-
home environment domain, the work of [14] introduces
temporal information in the theory of evidence to perform
the activity recognition problem.

The work presented here, follows a novel approach,
since the sources of information are sensor measurements
which are grouped to form artificial words (activities) and
documents (a set of activities over time) which gener-
ate a corpus representing the dynamic bahaviour of the
monitored environment. This paper, extends the work
presented in [15] using a different word length and more
experiments.

III. Building the LDA model
In a generative model the goal is to find the best set

of latent variables (in this case, topics or routines) that
can explain the observed data, assuming that the model

actually generates the observed data. The LDA model is
based on the bag-of-words assumption, that is, the only
information relevant to the model is the frequency of
words. Thus, in Bei’s original model, the order of the
words in each document is not taken into account. To
easily overcome this assumption, in this work, the obtained
words are segmented in 9 different time intervals according
to the time of the day which generates the activity. This
produces a bigger vocabulary, however the bag-of-words
assumption persists inside the words generated from each
time interval. But, it makes sense since the granularity of
the activities we focus on is based on routines instead of
low-level activities. So, the input to the model is the bag-
of-words representation of a collection of text documents,
where documents D are represented as a sparse vector of
|W | non-negative counts from the words of a vocabulary
V .

Given D documents that could be expressed with T
topics over W words, it could be possible to represent
P (W |T ) with a set of T multinomial distributions φt

over the W words. P (W |T ) represents the probability
distribution over words W given a topic T . LDA models
each document d as a mixture θd over T latent topics,
where each topic φt is a multinomial distribution over
the |W | word vocabulary. LDA assumes a Dirichlet prior
distribution on the parameters θd and φt.
θd is a |D|xT matrix of document-specific mixture

weights for the T topics each of them drawn from a
Dirichlet(α) prior distribution with hyper-parameter α.
The parameter α provides information about how seman-
tically diverse documents are (in this case daily occupancy
patterns) with lower values indicating a higher diversity.
φt is a |W |xT matrix of word-specific mixture weights

from the words W of the vocabulary V for the T topics,
each of them drawn from a Dirichlet(β) prior distribu-
tion with hyper-parameter β. The parameter β provides
information about how similar the different topics are, it
provides the log-likelihood of prob(word|topic) for each one
of the T topics.

Given the parameters α and β, the joint distribution of
a topic mixture θ, a set of T topics z, and a set of N words
w is given by:

p(θ, z, w|α, β) = p(θ|α)
N∏

n=1
p(Zn|θ)p(wn|Zn, β) (1)

the computation of equation (1) parameters is in-
tractable in general, due to the coupling between θ and
β and different approximate inference algorithms, such
as Gibbs sampling, Laplace approximation, variational
approximation and Markov Chain Monte Carlo [16] should
be employed. For a good comparison between the different
inference algorithms that could be used in LDA, see [17].
In this work a variational Expectation −Maximization
inference algorithm, as detailed in [1], is used in order to
find the parameters θd, α, φt and β.



Fig. 1. Plan of the three floor Innotek building. Rooms highlighted
in yellow are those which have some activity information.
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Fig. 2. Example of word (IIOOII3011) which indicates an activity
pattern of someone in the room for 10 minutes, out for 10 minutes
and in again for other 10 minutes at time interval 3 (between 7:00
and 9:00 am.) in the room 0.11

When the LDA model is trained it could be used to
infer the topic distribution of new documents given the
document-topic Dirichlet prior and the words distribution
of each topic given the topic-word learned distribution.
The learned distributions could be used for classifying new
documents or measuring similarities between documents.

The information of the words W which formed the
documents D, the employed number of topics T and the
probabilities of some learned distributions is shown in the
next section.

IV. Experiments
One of the main questions that arise when dealing with

the LDA model is what is a word W and what set of
words are used to make up the documents D. This section
reports the obtained results with the Innotek dataset using
different modeling schemes.

The data for the Innotek dataset were obtained from
monitoring the Innotek building in Geel, Belgium (see
Figure 1) from March 12 2010 to August 28 2010.

The occupancy data is captured by centrally mounted
high-quality PIR-based sensors that are part of the Philips

system to install the automatic lighting. Detection of
motion will trigger the lights which will remain switched
on for at least 10 minutes. If no motion has been detected
in this period, the lights will be turn-off again. Innotek
has arranged for connecting these sensors to the bus of
their Johnson Controls climate management system, which
enables their use to also control the room temperature.
The climate management system will set the room to
hibernation mode if no occupancy has been detected for
a certain time interval. Once occupancy is detected, the
room climate will go to the comfort level as set locally per
room by the inhabitants.

As the Johnson Controls sensor bus can be read out at
a central point we have been able to log the data of most
rooms of the building on a 1 minute accurate timescale.
The events are based on integration of detections over the
1 minute interval and indicate the occupancy with a high
level of confidence.

The raw obtained measurements are mapped into words
in order to generate activity information. Each of the 30-
minutes duration words (see Figure 2) that could formed
the documents is composed of 10 digits:

• 6 slots of 5 minutes of duration. Each slot means if
that room is occupied or empty during that interval,
it is taken the maximum between each 5 minutes
occupancy information. Please, note that these 5-
minutes slots do not overlap between each other,
providing sequential information over time. (6 digit)

• a number between 1 and 9 indicating the time inter-
val: from 0:00 to 6:00 (1), 6:00 to 7:00 (2), 7:00 to
9:00 (3), 9:00 to 11:00 (4), 11:00 to 12:00 (5), 12:00 to
17:00 (6), 17:00 to 19:00 (7), 19:00 to 21:00 (8) and
from 21:00 to 24:00 (9). (1 digit)

• the room number (3 digits).

A. How many Routines (Topics)?
To establish the best number of topics T is one of the

main tasks which must be taken into account in the LDA
model. Too many topics may produce random results of
words which may be difficult to interpret. On other hand,
too few topics usually result in a very broad groups. A
common approach is to use the number of topics that
leads to best generalization performance over unseen new
documents (validation data), known as perplexity. This
measure is used by convention in language modeling and
the standard one is defined as the reciprocal geometric
mean of the likelihood of a test corpus given a model. How-
ever, there are different ways to calculate the perplexity,
we refer the reader to [18] for more information.

Formally for M documents, standard perplexity mea-
surement is defined as:

perp = exp(−
∑M

m=1 log p(Wm|Lda)∑M
m=1 Nm

) (2)

where p(Wm|Lda) is the probability of the unseen set of



words in document m given the LDA trained model and
Nm the number of words in each document.

The optimum number of latent topics also depends on
the underlying nature of the data, that is, as in other
clustering algorithms, the optimum number is related with
the clusters that the data should have.

The approach followed next in the experiments is to find
the value of T which provides a lower perplexity indicator
and then obtain the K most likely words that composed
the most relevant topics.

B. Intra-Room Occupancy Modeling
First, the LDA model is trained for each room, using a

corpus formed by the documents having occupancy infor-
mation of each room for each day. From all the rooms of
the Innotek building, just those which provide occupancy
information were employed, these rooms are highlighted
in Figure 1. Therefore a document corresponds to the set
of activities (words) that took place in one room over one
day.

In these experiments the vocabulary size of each room’s
model is formed by 26 (patterns of occupancy) times the
time interval (9), that is 64 ∗ 9 = 576 different words. The
empty words at interval 1 and 9, that is at night or early in
the morning were removed and not used for training the
model, since they are usually considered as stop-words.
Only information about weekdays was taken into account,
giving a total amount of 24 weeks. The occupancy data
were split between 12 different subsets of training and
validation. A training set of 22 weeks (110 documents)
were employed in order to train the LDA model. The
validation set of 2 weeks (10 documents) performs the
inference using the model over the unseen data. Perplexity
measurements were obtained from 12 different subsets
using T values of 7,8,9,10,15,20,25,50,100 and 150. The
graphs of how the number of topics T affects the perplexity
values of rooms 0.11, 1.2, 2.7 and 2.9 are shown in Figure
3

It seems that the obtained results are consistent with the
previous classification of the time intervals and the model
obtains the clusters accordingly. As an example, Table I
shows the 3 most probable words for each obtained topic of
room 0.11 (which corresponds to number 10) with T = 10.
A picture of the frequencies of the room 0.11 is also shown
in Figure 5.

C. Inter-Room Occupancy Modeling
Second, the LDA model was trained using the informa-

tion of all the rooms from each floor with the purpose
to obtain related patterns between rooms. In this scheme
each document is composed of the daily information from
all the rooms of one floor. For instance, for floor 0, 15
different rooms were employed: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.10, 0.11, 1.12, 0.13, 0.14, 0.23 and 0.25 to
train the model. The vocabulary size of this scheme is
formed by 23616 words and the number of documents of

the training set is ≈ 1450 since not all the rooms provide
information over the whole data, which in that case would
be 1500 documents. The obtained perplexity values from
each number of topics using the 12 cross validation sets
for the floor 0 are shown in Figure 4.

From the obtained values shown in Figure 4 it seems
that a value of T = 50 provides a good choice, so the 3
most probable words of some of the obtained topics with
T = 50 are shown in Table II. The activity of room 24
(which corresponds to room 0.25 in the map) provides an
interesting occupancy behaviour (see Topic 5,6,8,13 and 34
of Table II). For instance, topic 5 indicates that there are
in and out activities within a slot of 15 minutes at the time
interval 2 (between 6:00 and 7:00 am) with a relative high
probability. Moreover topics 6, 8, 13, and 24 also indicate
that in this room there are a lot of interesting activity
patterns at intervals 3, 5 and 7. On the other hand, topics
35, 36, 40 and 3 indicate a similar occupancy pattern
between rooms 13, 12, 6 and 1 (rooms 0.14, 0.13, 0.7, and
0.2 on Figure 1), that is without occupancy between 11:00
and 17:00.

Fig. 3. These graphs show the average and standard deviation (log
scale) of the 12 cross-validation executions of the obtained perplexity
values from the LDA model trained using the information of the
following rooms: (a) Room 0.11, floor 0, it is shown that a topic
value of T = 10 provides the best results. (b) Room 1.02, floor 1,
it is shown that a topic value of T = 10 provides results with less
dispersion than T=9 and T=15. (c) Room 2.07, floor 2, it is shown
that a topic value T = 10 provides the best results. (d) Room 2.09,
floor 2, it is shown that a topic value T = 10 provides the best results.



TABLE I
3 most probable words for each obtained topic of room 0.11 with T = 10

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic)
OOOOOO6010 0.227865 OOOOOO7010 0.182136 IIIIII5010 0.202099 OOOOOO4010 0.154278 IIIIII6010 0.232004
OOOOOO8010 0.139317 OOOOOO8010 0.145584 IIIIII6010 0.198097 IIIIII6010 0.134526 OOOOOO8010 0.120875
IIIIOO3010 0.003410 OIIIII6010 0.018911 OOOOOO8010 0.128221 OOOOOO8010 0.124059 IIIIII7010 0.056416
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic)
OOOOOO4010 0.222017 OOOOOO5010 0.172389 OOOOOO6010 0.223353 IIIIII4010 0.242440 OOOOOO6010 0.292585
OOOOOO7010 0.164146 OOOOOO7010 0.138207 OOOOOO7010 0.120996 OOOOOO5010 0.131204 OOOOOO8010 0.137381
IIIIII3010 0.059309 OOOOOO8010 0.130942 OOOOOO8010 0.116019 OOOOOO8010 0.130029 OOOIII5010 0.016790

Fig. 5. Picture of occupancy frequencies for room 0.11 over the whole data (24 weeks) for the 7200 week minutes. Each cell corresponds
to a 10 minute interval. Rows indicate the frequency of occupancy in gray-scale (the most likely occupancy is black) and columns the time
evolution.

TABLE II
3 most probable words for some obtained topics of the floor 0 with T = 50

Topic 3 Topic 5 Topic 6 Topic 8 Topic 13
word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic)
OOOOOO5013 0.205769 OOOIII2024 0.257175 OOIIII3024 0.171187 IIIIIO7024 0.546621 IIOIII5024 0.233868
OOOOOO6013 0.203926 OIIIOO2024 0.128993 IIIIOO3024 0.130289 IIIOOI7024 0.136695 IIIIOI5024 0.233568
OOOOOO8013 0.131598 OOOOII5024 0.128864 IIIOOO7024 0.076230 IIIIII5024 0.000555 OIIIII3024 0.076689
Topic 23 Topic 34 Topic 40 Topic 35 Topic 36
word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic) word p(w|topic)
IIIIII5002 0.203315 OOIIII5024 0.177317 OOOOOO5006 0.192050 OOOOOO5012 0.210557 OOOOOO5001 0.232236
IIIIII6002 0.202301 IIIOOO5024 0.177817 OOOOOO6006 0.181591 OOOOOO6012 0.216557 OOOOOO6001 0.212460
OOOOOO8002 0.139457 IIIIOI3024 0.088922 OOOOOO8006 0.131467 OOOOOO7012 0.131598 OOOOOO8001 0.130942

Fig. 6. Picture of occupancy frequencies for the floor 0 over the whole data (24 weeks) for the 7200 week minutes. Each cell corresponds
to a 10 minute interval. Rows indicate the frequency of occupancy in gray-scale (the most likely occupancy is black) and columns the time
evolution. Each line correspond to the occupancy information of one room.

Fig. 7. Zooming in the occupancy frequencies for the floor 0 on Monday over whole data (24 weeks). Each cell corresponds to a 10 minute
interval. Rows indicate the frequency of occupancy in gray-scale (the most likely occupancy is black) and columns the time evolution. Each
line correspond to the occupancy information of one room.

V. Conclusion and future work

The experiments carried out with the provided data
employed a word length of 30 minutes which is composed
by the occupancy information of 6 intervals by 5 minutes
of duration. However different word lengths could be em-
ployed in order to discover routines from different activity
granularity.

Despite the LDA model seems to be a good choice for

building a long-term occupancy model of sensor’s data,
more efforts and experiments should be taken with the aim
of establishing the best representation and parametriza-
tion of the obtained data. It seems reasonable to change
the words length and the number of topics with the
objective of detect routines with different granularities. A
common agreement in the document modeling domain is
that the number of topics T should be influenced also by



Fig. 4. Obtained perplexity values from the LDA model using all the
rooms of floor 0. It is shown that T=50, T=100 and T=150 provide
reasonable good results respect to others T values. The average and
standard deviation of the 12 cross validation executions are shown
(log scale).

the level of information that the application would like to
provide. That is, over the same corpus some people could
be interested in a broad range of topics, while others not.
This could be an interesting idea to explore and research
in the sensor network domain. In this work, for the intra-
room occupancy modeling a value of T = 10 seems to
provide the best perplexity (see Figure 3), which it is also
consistent with the situation of having 9 different time
intervals modeled a priori in the words construction phase.
This value of T = 10 in the intra-room modeling indicates
that the LDA trained model with 10 routines provides the
best generalization over this test data. On the other hand,
regarding floor 0, a number of T = 50, T = 100 and T =
150 routines provides good generalization results. In this
case, the LDA model of floor 0 represents the routines of
15 different rooms (over 9 different time intervals), which
also seems to be consistent with the obtained perplexity
values of T = 150 (see Figure 4), since they provided a
good result compared to other values of T .

One of the main advantages of the application of this un-
supervised probabilistic model to the office environments
could be the intelligent use of energy and a way to provide
smarter and eco-friendly buildings.

Finally, there are several modifications to the original
LDA model which could also be useful in this kind of
environments, such as the dynamic topic models and may
be of interested to complement this work.
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