RDF description Gabriel Martinez-Pieper

Research intern

Sep. 2016  -  Nov. 2016


social-network-icon GitHub
social-network-icon LinkedIn

[u' @inproceedings{orduna_addressing_2018, address = {San Jose, USA}, title = {Addressing technical and organizational pitfalls of using remote laboratories in a commercial environment}, abstract = {A remote laboratory is a hardware and software solution that enables students to interact with real equipment located somewhere else on the internet. This way, students interact with a real laboratory as if they were on a hands-on- lab session. Once the equipment is remote, it is also possible to share it among institutions, so students from one school or university can access a lab in another university. While there is an interest by many universities of sharing their laboratories, and there are several experiences doing so, the impact has been typically limited. One of the reasons for the limited impact is the lack of robustness in most solutions due to technical issues, which leads to a lack of trust and interest by the potential consumers. LabsLand is a spin-off of the WebLab-Deusto research group which sells access to laboratories of universities to other schools and universities. This contribution analyzes through use cases what are the technical and organizational pitfalls that were found in the process of taking real laboratories and making them available commercially and what are the solutions used to tackle the issues arisen.}, author = {Orduna, Pablo and Rodriguez-Gil, Luis and Angulo, Ignacio and Martinez-Pieper, Gabriel and Villar, Aitor and Hernandez-Jayo, Unai and Buitrago, Paola and Camacho, Raul and Marmolejo, Paola and Garcia-Zubia, Javier}, month = oct, year = {2018} }']

[u' @inproceedings{garcia-zubia_learning_2017, address = {New York, NY, USA}, title = {Learning to program in {K}12 using a remote controlled robot: {RoboBlock}}, abstract = {Programming is part of the curricula in different subjects and countries. To face this challenge, schools are using visual programming (e.g., Scratch, Blockly) and/or educational robots. Some combinations of these two tools are very popular, such as the Lego Mindstorm robots. This work presents a remote controlled robot called RoboBlock, and its main characteristic is that it can be programmed and controlled via Internet. RoboBlock is developed under the WebLab-Deusto Remote Laboratory Management System}, booktitle = {Proceedings of conference: 2017 14th {International} {Conference} on {Remote} {Engineering} and {Virtual} {Instrumentation} ({REV})}, author = {Garcia-Zubia, Javier and Angulo, Ignacio and Mart\xednez-Pieper, Gabriel and Ordu\xf1a, Pablo and Rodriguez-Gil, Luis and Hernandez, Unai}, year = {2017} }']

[u" @inproceedings{angulo_roboblock:_2017, title = {{RoboBlock}: {A} remote lab for robotics and visual programming}, shorttitle = {{RoboBlock}}, doi = {10.1109/EXPAT.2017.7984373}, abstract = {Robotics is part of K12 curricula in different subjects and countries because it is exciting and formative. To teach, the teacher and the school need a laboratory with robots, and this is a challenge because they are not cheap and they need to be maintained. In this scenario the use of a remote lab for robotics is a good solution. There are several remote labs for robotics, the main advantage of RoboBlock is that it offers in the same interface the robot and a visual tool based on Blockly to program the robot.}, booktitle = {2017 4th {Experiment}@{International} {Conference} (exp.at'17)}, author = {Angulo, Ignacio and Garcia-Zubia, Javier and Hernandez-Jayo, Unai and Uriarte, I\xf1igo and Rodriguez-Gil, Luis and Ordu\xf1a, Pablo and Mart\xednez-Pieper, Gabriel}, month = jun, year = {2017}, keywords = {Blockly, Hardware, K12 curricula, Programming profession, RoboBlock, Robot sensing systems, Tools, Visualization, educational robots, remote lab, remote labs, robot programming, robotics, visual programming, visual tool}, pages = {109--110} }"]

[u' @inproceedings{martinez-pieper_weblab_2016, address = {Madrid, Spain}, title = {Weblab \\#x2014; {Microscope}: {A} remote laboratory for experimenting with digital microscope}, shorttitle = {Weblab \\#x2014; {Microscope}}, doi = {10.1109/REV.2016.7444457}, abstract = {The use of high accuracy positioning systems provides endless possibilities for the development of remote laboratories. The remote laboratory presented in this paper allows full control of a microscope over a surface by the use of a Cartesian positioning system. The arrangement of multiple samples over the accessible surface by the lens so far as the provision of a rich graphical user interface will allow secondary school students to carry multiple experiments in biology, physics and chemistry through internet.}, booktitle = {2016 13th {International} {Conference} on {Remote} {Engineering} and {Virtual} {Instrumentation} ({REV})}, author = {Mart\xednez-Pieper, Gabriel and Angulo, Ignacio and Garc\xeda-Zubia, Javier}, month = feb, year = {2016}, note = {00000}, keywords = {Biology, Remote Laboratories, WebLab-Deusto}, pages = {159--162} }']

[u' @article{angulo_remote_2015, title = {Remote {Experimentation} {Using} a {Didactical} {Elevator}}, volume = {10}, issn = {1932-8540}, doi = {10.1109/RITA.2015.2486478}, abstract = {The use of didactic models in industrial engineering provides students with an enhanced experimental environment to design in accordance with industrial requirements. The high cost of industrial models promotes its deployment as a remote experiment. The system presented in this paper allows real experimentation through the Internet over an industrial model that accurately emulates a three-floor elevator.}, number = {4}, journal = {IEEE Revista Iberoamericana de Tecnologias del Aprendizaje}, author = {Angulo, Ignacio and Garc\xeda-Zub\xeda, Javier and Mart\xednez-Pieper, Gabriel}, month = nov, year = {2015}, note = {00000}, keywords = {FPGA experimentation, Remote Laboratories, WebLab-Deusto, educational technology}, pages = {319--323} }']

[u" @inproceedings{garcia-zubia_archimedes_2015, address = {Azores, Portugal}, title = {Archimedes remote lab for secondary schools}, doi = {10.1109/EXPAT.2015.7463215}, abstract = {This paper presents a remote lab designed for teaching the Archimedes' principle to secondary school students, as well as an online virtual lab on the general domain of buoyancy. The Archimedes remote lab is integrated into WebLab-Deusto. Both labs are promoted for usage in frame of the Go-Lab European project.}, booktitle = {2015 3rd {Experiment} {International} {Conference} (exp.at'15)}, author = {Garc\xeda-Zub\xeda, Javier and Angulo, Ignacio and Mart\xednez-Pieper, Gabriel and L\xf3pez-De-Ipi\xf1a, Diego and Hern\xe1ndez, Unai and Ordu\xf1a, Pablo and Dziabenko, Olga and Rodr\xedguez-Gil, Luis and Riesen, S. A. N. van and Anjewierden, Anjo and Kamp, E. T. and de Jong, Ton}, month = jun, year = {2015}, note = {00000}, keywords = {Archimedes remote lab, Archimedes' principle, Buoyancy, Engineering education, Go-Lab, Remote Laboratories, Secondary Schools, WebLab-Deusto}, pages = {60--64} }"]