- Publications
- Conference paper
- PILAR: a Federation of VISIR Remote Laboratory Systems for Educational Open Activities
PILAR: a Federation of VISIR Remote Laboratory Systems for Educational Open Activities
Authors
- Felix Garcia-Loro
- Elio Sancristobal
- Gabriel Díaz
- A. Macho
- Pablo Baizan
- Manuel Blazquez
- Manuel Castro
- Pedro Plaza
- Pablo Orduña
- Michael Auer
- Wlodek Kulesza
- Ingvar Gustavsson
- Kristian Nilsson
- Andre Fidalgo
- Gustavo Alves
- Arcelina Marques
- Unai Hernández-Jayo
- Javier García-Zubia
- Christian Kreiter
- Andreas Pester
- C. Garcia-Hernandez
- Ricardo Tavio
- Kati Valtonen
- Elina Lehtikangas
[u' @inproceedings{garcia-loro_pilar:_2018, title = {{PILAR}: a {Federation} of {VISIR} {Remote} {Laboratory} {Systems} for {Educational} {Open} {Activities}}, shorttitle = {{PILAR}}, doi = {10.1109/TALE.2018.8615277}, abstract = {Social demands have promoted an educational approach based on an \u201canywhere and anytime\u201d premise. Remote laboratories have emerged as the answer to the demands of technical educational areas for adapting themselves to this scenario. The result has not only benefit distance learning students but has provided new learning scenarios both for teachers and students as well as allowing a flexible approach to experimental topics. However, as any other solution for providing practical scenarios (hands-on labs, virtual labs or simulators), remote labs face several constraints inherited from the subsystems of its deployment - hardware (real instruments, equipment and scenario) and software (analog/digital conversions, communications, workbenches, etc.)-. This paper describes the Erasmus+ project Platform Integration of Laboratories based on the Architecture of visiR (PILAR) which deals with several units of the federation installed in different educational institutions and devoted to analog electronics and electrical circuits. Based on the limitations of remote labs, the need for the federation will be justified and its benefits will be described by taking advantage of its strengths. The challenges that have come up during the different stages and the different approaches to design are also going to be described and analyzed.}, booktitle = {2018 {IEEE} {International} {Conference} on {Teaching}, {Assessment}, and {Learning} for {Engineering} ({TALE})}, author = {Garcia-Loro, Felix and Sancristobal, Elio and Diaz, Gabriel and Macho, A. and Baizan, Pablo and Blazquez, Manuel and Castro, Manuel and Plaza, Pedro and Ordu\xf1a, Pablo and Auer, Michael and Kulesza, W. and Gustavsson, Ingvar and Nilsson, Kristian and Fidalgo, Andre and Alves, Gustavo and Marques, A. and Hernandez-Jayo, Unai and Garcia-Zubia, Javier and Kreiter, Christian and Pester, Andreas and Garcia-Hernandez, C. and Tavio, R. and Valtonen, K. and Lehtikangas, E.}, month = dec, year = {2018}, keywords = {Distance learning, Education, Federation, Instruments, PILAR, Relays, Software, Switches, VISIR, VISIR remote laboratory systems, analog electronics, analog-digital conversions, computer aided instruction, distance learning students, educational approach, educational institutions, educational open activities, electronics, experimental topics, flexible approach, hands-on labs, laboratories, laboratory, learning scenarios, practical scenarios, remote lab, remote laboratories, remote labs, social demands, technical educational areas, virtual labs}, pages = {134--141} }']
Abstract