Semantic Based Self-configuration Approach for Social Robots in Health Care Environments

Abstract

Health care environments, as many other real world environments, present many changing and unpredictable situations. In order to use a social robot in such an environment, the robot has to be prepared to deal with all the changing situations. This paper presents a robot self-configuration approach to overcome suitably the commented problems. The approach is based on the integration of a semantic framework, where a reasoner can take decisions about the configuration of robot services and resources. An ontology has been designed to model the robot and the relevant context information. Besides rules are used to encode human knowledge and serve as policies for the reasoner. The approach has been successfully implemented in a mobile robot, which showed to be more capable of solving not pre-designed situations.